Feedback please!

https://tnusurvey.ethz.ch/index.php/472246

RL in mental health

Quentin Huys, MD PhD

University Hospital of Psychiatry, Zurich Translational Neuromodeling Unit, University of Zürich und ETH Zurich

No conflicts of interest.

Computational Psychiatry Satellite @ SOBP May 9 2018 NYC

Disclaimer

- tutorial focus on analysing data with RL models
- very incomplete, selective and subjective review
- Iots of my own work for exposition

- Fixed effect
 - conflates within- and between- subject variability

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\mu_{\theta},\sigma_{\theta})$$

- Fixed effect
 - conflates within- and between- subject variability
- Average behaviour
 - disregards between-subject variability
 - need to adapt model
- Summary statistic
 - treat parameters as random variable, one for each subject
 - overestimates group variance as ML estimates noisy
- Random effects
 - prior mean = group mean

$$p(\mathcal{A}_i|\mu_{\theta},\sigma_{\theta}) = \int d\theta_i \, p(\mathcal{A}_i|\theta_i) \, p(\theta_i|\underbrace{\mu_{\theta},\sigma_{\theta}})$$

Quentin Huys, TNU/PUK

Estimating the hyperparameters

- Effectively we now want to do gradient ascent on: $\frac{d}{d\zeta}p(\mathcal{A}|\zeta)$
- But this contains an integral over individual parameters:

$$p(\mathcal{A}|\zeta) = \int d\theta p(\mathcal{A}|\theta) \, p(\theta|\zeta)$$

• So we need to:

$$\hat{\zeta} = \operatorname{argmax}_{\zeta} p(\mathcal{A}|\zeta)$$
$$= \operatorname{argmax}_{\zeta} \int d\theta p(\mathcal{A}|\theta) p(\theta|\zeta)$$

Expectation Maximisation

$$\begin{split} \log p(\mathcal{A}|\zeta) &= \log \int d\theta \, p(\mathcal{A}, \theta|\zeta) \\ &= \log \int d\theta \, q(\theta) \frac{p(\mathcal{A}, \theta|\zeta)}{q(\theta)} \\ &\geq \int d\theta \, q(\theta) \log \frac{p(\mathcal{A}, \theta|\zeta)}{q(\theta)} \end{split} \text{Jensen's inequality} \\ ^{\text{h}} \text{ E step: } q^{(k+1)}(\theta) &\leftarrow p(\theta|\mathcal{A}, \zeta^{(k)}) \\ k^{\text{th}} \text{ M step: } \zeta^{(k+1)} &\leftarrow \arg _{\zeta} \int d\theta \, q(\theta) \log p(\mathcal{A}, \theta|\zeta) \end{split}$$

- Iterate between
 - Estimating MAP parameters given prior parameters
 - Estimating prior parameters from MAP parameters

 k^{th}

EM with Laplace approximation

of MAP estimates

Simulations

emfit toolbox

- models and fitting for six experiments
 - basic Rescorla-Wagner
 - probabilistic reward task Pizzagalli et al., 2005
 - Affective Go/Nogo Guitart et al. 2012
 - Twostep Daw et al., 2011
 - Effort Gold et al., 2013
 - Pruning Huys et al, 2012, Lally et al., 2017
- wrapper scripts
- key function is emfit.m

www.cmod4mh.org/emfit.zip

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

- Diminished interest or pleasure in response to stimuli that were previously perceived as rewarding
- What is "stimuli"? What "states" does this correspond to in terms of RL?

$$\mathcal{V}(s) = \arg\max_{a} \sum_{s'} \mathcal{T}^{a}_{ss'} [\mathcal{R}^{a}_{ss'} + \gamma \mathcal{V}(s')]$$

Willner et al., 1987; Dichter et al., 2010; Klepce et al., 2010

2018 Computational Psychiatry Satellite @ SOBP

Anhedonia

- inability to enjoy rewards
- but assessed by introspection / recollection
- maybe due to the expected values accessed?
- the problem then must be learning

$$\mathcal{Q}_t(a,s) = \mathcal{Q}_{t-1}(a,s) + \epsilon(r_t - \mathcal{Q}_{t-1}(a,s))$$

Montague et al., 1996, Dunlop and Nemeroff 2007; Gard et al., 2006

Anhedonia

- inability to enjoy rewards
- but assessed by introspection / recollection
- maybe due to the expected values accessed?
- the problem then must be learning

$$\mathcal{Q}_{t}(a,s) = \mathcal{Q}_{t-1}(a,s) + \epsilon(r_{t} - \mathcal{Q}_{t-1}(a,s))$$
Dopamine
A early and the second s

Montague et al., 1996, Dunlop and Nemeroff 2007; Gard et al., 2006

- Anhedonia
 - inability to enjoy rewards
 - but assessed by introspection / recollection
 - maybe due to the expected values accessed?
 - the problem then must be learning

Montague et al., 1996, Dunlop and Nemeroff 2007; Gard et al., 2006

Reward expectation

Short = rich:	Long correct: Short correct:	30% rewarded 75% rewarded
---------------	---------------------------------	------------------------------

Pizzagalli et al., 2005 Biol Psych

RL in mental health

Reward expectation

Short correct: 75% rewarded

Reward expectation

Pizzagalli et al., 2005 Biol Psych

Quentin Huys, TNU/PUK

basic RW

$$\mathcal{Q}_t(a,s) = \mathcal{Q}_{t-1}(a,s) + \epsilon(r_t - \mathcal{Q}_{t-1}(a,s))$$

basic RW

$$\mathcal{Q}_t(a,s) = \mathcal{Q}_{t-1}(a,s) + \epsilon(r_t - \mathcal{Q}_{t-1}(a,s))$$

allow for reward sensitivity differences

basic RW

$$\mathcal{Q}_t(a,s) = \mathcal{Q}_{t-1}(a,s) + \epsilon(r_t - \mathcal{Q}_{t-1}(a,s))$$

allow for reward sensitivity differences

with instructions

$$p(a|s) = \frac{e^{\mathcal{Q}(a,s) + \gamma \mathcal{I}(a,s)}}{\sum_{a'} e^{\mathcal{Q}(a',s) + \gamma \mathcal{I}(a',s)}}$$

basic RW

$$\mathcal{Q}_t(a,s) = \mathcal{Q}_{t-1}(a,s) + \epsilon(r_t - \mathcal{Q}_{t-1}(a,s))$$

allow for reward sensitivity differences

$$p(a|s) = \frac{e^{\mathcal{Q}(a,s) + \gamma \mathcal{I}(a,s)}}{\sum_{a'} e^{\mathcal{Q}(a',s) + \gamma \mathcal{I}(a',s)}}$$

100 ms

with state uncertainty

$$p(a|s) = \frac{e^{\zeta \mathcal{Q}(a,s) + (1-\zeta)\mathcal{Q}(a,s') + \gamma \mathcal{I}(a,s)}}{\sum_{a'} e^{\zeta \mathcal{Q}(a',s) + (1-\zeta)\mathcal{Q}(a,s') + \gamma \mathcal{I}(a',s)}}_{\text{Huys et al., 2013 Biol Mood Anx}}$$

Quentin Huys, TNU/PUK

Hierarchical fitting

Anhedonia correlates with reward sensitivity

Anhedonia

Huys et al., 2013 Biol Mood Anx

Quentin Huys, TNU/PUK

Anhedonia

e vard sensitivity

Happiness?

Happiness(t) =
$$W_0 + W_1 \sum_{j=1}^{t} \gamma^{t-j} CR_j + W_2 \sum_{j=1}^{t} \gamma^{t-j} EV_j$$

+ $W_3 \sum_{j=1}^{t} \gamma^{t-j} RPE_j$

Rutledge et al., 2015 J Neurosci

Quentin Huys, TNU/PUK

Happiness?

Quentin Huys, TNU/PUK

Anhedonia

- No impairment in primary sensitivity (sucrose)
- No impairment in learning
- No impairment in computing prediction errors
- Anhedonia related to sensitivity to complex stimuli (here monetary)

Anhedonia

- No impairment in primary sensitivity (sucrose)
- No impairment in learning
- No impairment in computing prediction errors
- Anhedonia related to sensitivity to complex stimuli (here monetary)

Bylsma et al., 2008
Example code

- www.cmod4mh.org/emfit.zip
- batchRunEMfit('mProbabilisticReward')
 - will generate example data
 - fit all models in modelList.m
 - perform model comparison
 - generate surrogate data
 - generate plots for basic sanity checks
- basic model is llbeq0.m

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

Dopamine, learning & addiction

Dopamine, learning & addiction

Dopamine, learning & addiction

Is dopamine's role in addiction mediated by its role in learning?

Addictive Pavlovian values

Flagel et al., 2011 Nature, Huys et al., 2014 Prog. Neurobiol.

Addictive Pavlovian values

Flagel et al., 2011 Nature, Huys et al., 2014 Prog. Neurobiol.

Sign trackers Goal trackers

Flagel et al., 2011 Nature

RL in mental health

Flagel et al., 2011 Nature

RL in mental health

Quentin Huys, TNU/PUK

Pavlovian state values: sign tracking

Flagel et al., 2011 Nature

Sign-tracking in humans?

n=129

Schad et al., in prep

STs only show BOLD RPE

Schad et al., in prep

RPEs in Pavlovian setting?

- No behaviour cannot fit the usual models
- Early results: fMRI relatively insensitive to learning rate used. 0.3 as 'default'
- Here, assumed slower one as Pavlovian trace conditioning paradigm

What should we expect?

Assume data generated as follows

$$\mathbf{Y} = \beta \mathbf{x}_g + \epsilon,$$

and use wrong regressor

$$\hat{\boldsymbol{\beta}} = (\mathbf{x}_{f}^{T}\mathbf{x}_{f})^{-1}\mathbf{x}_{f}^{T}\mathbf{Y}$$

$$= (\mathbf{x}_{f}^{T}\mathbf{x}_{f})^{-1}(\mathbf{x}_{f}^{T}\boldsymbol{\beta}\mathbf{x}_{g})$$

$$= \boldsymbol{\beta}\boldsymbol{\rho}(\mathbf{x}_{g},\mathbf{x}_{f})\frac{\boldsymbol{\sigma}(\mathbf{x}_{g})}{\boldsymbol{\sigma}(\mathbf{x}_{f})}$$

the resulting t/p values

$$\hat{t} = \frac{\hat{\beta}}{s(\hat{\beta})} = \rho(\mathbf{x}_g, \mathbf{x}_f) \text{CNR} \sqrt{\frac{T-2}{1 + \text{CNR}^2 (1 - \rho(\mathbf{x}_g, \mathbf{x}_f)^2)}}$$

For static reward probability

There is little information

For drifting reward probability

There is some information

STs only show BOLD RPE

Schad et al., in prep

RL in mental health

STs only show BOLD RPE

Schad et al., in prep

RL in mental health

Quentin Huys, TNU/PUK

Pupil size accommodates in STs only

Schad et al., in prep

Pavlovian-Instrumental Transfer

Schad et al., in prep

RL in mental health

Pavlovian-Instrumental Transfer

Stimulus control

Schad et al., in prep

RL in mental health

Pavlovian-Instrumental Transfer

Schad et al., in prep

PIT in alcohol use disorder

13 abstainers 31 AUD 24 HC 11 relapsers

Garbusow et al., 2016 Addiction

PIT in at-risk young males

201 HC

Garbusow et al., 2017 under rev.

RL in mental health

Quentin Huys, TNU/PUK

The point

- A model "processes" information
- Cannot increase it
- If it's not there, the model won't put it there

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

Obsessive-compulsive disorder

- Overwhelming urge to think certain thoughts or perform certain actions
- A "habit" driving urges to think and to act?

Special Issue: Cognition in Neuropsychiatric Disorders

Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry

Trevor W. Robbins^{1,2}, Claire M. Gillan^{1,2}, Dana G. Smith^{1,2}, Sanne de Wit⁴ and Karen D. Ersche^{1,3}

¹Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, UK

² Department of Experimental Psychology, University of Cambridge, Cambridge CB2 3EB, UK

³ Department of Psychiatry, School of Clinical Medicine, Addenbrookes Hospital, Cambridge CB2 0SP, UK

⁴ Department of Clinical Psychology and Cognitive Science Center Amsterdam, University of Amsterdam, 1018 TV Amsterdam, The Netherlands

PEL ETOH

Model-free vs model-based valuation

Niv et al., 2008 TICS
Devaluation is impaired in OCD

RL in mental health

2018 Computational Psychiatry Satellite @ SOBP

Devaluation is impaired in OCD

Gillan et al., 2013 Biol Psych

Devaluation is impaired in OCD

RL in mental health

2018 Computational Psychiatry Satellite @ SOBP

Two-step task

Daw et al., 2011 Neuron

2018 Computational Psychiatry Satellite @ SOBP

Devaluation and two-step task

Devaluation Paradigm (interaction term)

Friedel et al., 2014 Front Neurosci

Example code

- www.cmod4mh.org/emfit.zip
- batchRunEMfit('mTwostep')
 - will generate example data
 - fit all models in modelList.m
 - perform model comparison
 - generate surrogate data
 - generate plots for basic sanity checks
- basic model is llm2b2alr.m

Hierarchical is definitely better

Twostep statistics

"Compulsive" disorders

Alcohol: no effect

Voon et al., 2015 Mol. Psychiatry

Validation in large online sample

Gillan et al., 2016 eLife

RL in mental health

Across questionnaires

Ventral Striatal F-DOPA promotes MB choices

Deserno et al., 2015 PNAS

RL in mental health

FDOPA and RPE betas: -ve correlation

Deserno et al., 2015 PNAS

No shift in at-risk drinking

Descriptive statistics of sample						
Age	188	18.07	18.24	18.33	18.50	18.93
Years in school	187	4	11	12	12	15
Measures of goal-directed/habitual control						
ω^{a}	188	0.00	0.20	0.59	0.80	1.00
MF _{score}	188	-0.42	-0.04	0.08	0.21	0.85
MB _{score}	188	-0.34	0.06	0.24	0.49	1.21
Measures of alcohol consumption						
CIDI measures						
Drink _{score}	188	-8.21	-3.54	-0.35	1.61	17.52
Age of first drink ^a	188	9	14	14	15	18
Age of first time drunk ^a	180	10	15	16	17	18
Estimated alcohol consumption in past year (g/day) $^{\rm a}$	188	0.00	3.21	6.43	15.43	112.50
Alcohol consumption in past year (g/drinking occasion) ^a	188	18	45	54	90	342
Age of first binge-drinking episode ^a	131	14	16	16	17	18
Number of binge-drinking episodes lifetime ^a	131	1	4	10	20	150
Alcohol consumption per binge-drinking episode (g) ^a	139	63	90	117	135	450
Questionnaire measures						
ADS sum score ^a	181	0	2	4	7	30
OCDS-G sum Score ^a	183	0	1	3	5	18
Blood markers						
AST (µKat/l) ^a	183	0.17	0.35	0.40	0.48	2.51
ALT (µKat/l) ^a	182	0.11	0.27	0.35	0.45	1.59
γ -GT (μ Kat/l) ^a	183	0.13	0.23	0.27	0.33	0.89
PEth ^a	158	10	10	60	60	1180
Measures of impulsivity						
BIS-15 sum score	185	18	27	30	34	45
SURPS Impulsivity ^a	186	5	9	10	11	17

Nebe et al., 2017 Addiction

No shift in at-risk drinking

	ω	<i>MF</i> _{score}	MB _{score}	RP	RPE_{MF}		$RPE_{\Delta MB}$		SURPS
				vS	vmPFC	vS	vmPFC	SUM	IMP
Drink _{score}	067	.000	004	019	.014	058	023	.256***	.246***
Age of first drink	011	.042	.057	184*	143	063	008	125	263***
Age of first time drunk	.066	.052	.048	044	011	040	.059	182*	155*
Estimated alcohol consumption	070	071	.038	101	.021	105	048	.088	.116
in past year (g/day)									
Alcohol consumption in past year	026	081	.101	087	006	038	018	.133	.081
(g/drinking occasion)									
Age of first binge-drinking episode	.098	033	.019	.075	.040	.076	.047	156	126
Number of binge-drinking	033	.038	.044	.001	.047	090	035	.232**	.179*
episodes lifetime									
Alcohol consumption per	064	.096	018	015	.048	.035	.059	.210**	.245***
binge-drinking episode (g)									
ADS sum score	061	.007	.029	.006	.115	040	099	.211**	.298***
OCDS-G sum score	.000	011	.031	.088	.182*	.021	.073	.223**	.228**
AST	.015	.015	047	025	.059	008	042	.039	.165*
ALT	072	.061	080	.003	.029	.010	.030	018	.159*
γ-GT	066	011	160*	074	089	075	005	205**	092
PEth	.041	048	.052	091	016	019	.005	150	.005

Nebe et al., 2017 Addiction

No shift in clinical AUD sample

	Group						
Variable	HCs (<i>n</i> = 96)		Abstainers (n =	: 37)	Relapsers ($n = 53$)		
Gender	Female: 16; mal	e: 80	Female: 7; male	: 30	Female: 6; male	Female: 6; male: 47	
Site	Berlin: 56; Dresd	en: 40	Berlin: 24; Dresden: 13		Berlin: 28; Dresden: 25		
	Mean (SD)	NA	Mean (SD)	NA	Mean (SD)	NA	
Demographic Variables							
Education, years	11.9 (1.5)	2	10.8 (1.5)	2	10.6 (3.5)	2	
Age, years	43.6 (10.9)	0	45.7 (12.0)	0	45.2 (9.9)	0	
Income, €	1201 (686)	22	1150 (741)	0	1013 (621)	5	
Smokers, %	65	0	75	0	75	0	
Duration of abstinence at fMRI, days	66.5 (280.9)	0	21.4 (11.6)	0	22.3 (12.4)	0	
Clinical Characteristics ^e							
No. of detoxifications	_	_	2.13 (2.06)	0	4.75 (5.03)	0	
Positive alcohol expectancies	25.7 (4.6)	0	31.7 (4.4)	0	32.8 (3.9)	0	
Depressive symptoms	1.9 (2.3)	1	3.9 (3.9)	0	4.2 (3.7)	0	
Craving	2.7 (2.8)	1	10.3 (8.2)	1	12.9 (8.4)	3	
Drinking motives	29 (7)	3	44 (11)	1	48 (14)	1	
Time to relapse, days	_	_	_	_	87.1 (80.0)	4	
Neuropsychological Testir	ng						
Verbal IQ	28.3 (4.6)	3	28.6 (4.3)	0	28.2 (4.8)	1	
Fluid IQ	10.7 (3.12)	0	9.9 (2.6)	1	9.1 (2.9)	0	
Working memory	7.5 (2.04)	0	6.62 (1.91)	0	6.54 (1.89)	0	
Blood Markers							
AST (μKat/L)	0.45 (0.17)	28	0.69 (0.53)	5	0.71 (0.52)	11	
ALT (μKat/L)	0.43 (0.19)	28	0.88 (0.73)	5	1.08 (2.16)	11	
γ-GT (μKat/L)	0.54 (0.67)	28	3.33 (6.71)	5	1.51 (1.38)	11	
PEth (ng/mL)	203.24 (359.68)	16	447.85 (349.13)	16	806.15 (736.83)	31	

Sebold et al., 2017 Biol. Psychiatry

Neural impairments?

Sebold et al., 2017 Biol. Psychiatry

RL in mental health

Neural impairments?

Sebold et al., 2017 Biol. Psychiatry

RL in mental health

Neural impairments?

Sebold et al., 2017 Biol. Psychiatry

Alcohol expectancies

Motivational interviewing

Sebold et al., 2017 Biol. Psychiatry

Alcohol expectancies

Motivational interviewing

- 1. Drinking makes me feel warm and flushed.
- 2. Alcohol lowers muscle tension in my body.
- 3. A few drinks make me feel less shy.
- 4. Alcohol helps me to fall asleep more easily.
- 5. I feel powerful when I drink, as if I can really make other people do as I want.
- 6. I'm more clumsy after a few drinks.
- 7. I am more romantic when I drink.
- 8. Drinking makes the future seem brighter to me.
- 9. If I have had a couple of drinks, it is easier for me to tell someone off.
- 10. I can't act as quickly when I've been drinking.
- 11. Alcohol can act as an anesthetic for me, that is, it can stop pain.
- 12. I often feel sexier after I've had a few drinks.
- 13. Drinking makes me feel good.
- 14. Alcohol makes me careless about my actions.
- 15. Some alcohol has a pleasant, cleansing, tingly taste to me.

Sebold et al., 2017 Biol. Psychiatry

Alcohol expectancies

Motivational interviewing

- 1. Drinking makes me feel warm and flushed.
- 2. Alcohol lowers muscle tension in my body.
- 3. A few drinks make me feel less shy.
- 4. Alcohol helps me to fall asleep more easily.
- 5. I feel powerful when I drink, as if I can really make other people do as I want.
- 6. I'm more clumsy after a few drinks.
- 7. I am more romantic when I drink.
- 8. Drinking makes the future seem brighter to me.
- 9. If I have had a couple of drinks, it is easier for me to tell someone off.
- 10. I can't act as quickly when I've been drinking.
- 11. Alcohol can act as an anesthetic for me, that is, it can stop pain.
- 12. I often feel sexier after I've had a few drinks.
- 13. Drinking makes me feel good.
- 14. Alcohol makes me careless about my actions.
- 15. Some alcohol has a pleasant, cleansing, tingly taste to me.

Sebold et al., 2017 Biol. Psychiatry

Pavlovian state values: sign tracking

Flagel et al., 2011 Nature

Goal-tracking in humans?

ST: learn expected value V GT: learn mappings T from CS to US identity

$$\mathcal{V}(s) = \sum_{a} \pi(a; s) \sum_{s'} \mathcal{T}(s'|s, a) [\mathcal{R}(s', a, s) + \mathcal{V}(s')]$$

Schad et al., in prep

Pavlovian learning in ST vs GT

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha^r \,\delta^r_t \qquad \mathcal{T}_t(cs, us) = \mathcal{T}_{t-1}(cs, us) + \alpha^s \,\delta^s_t$$
$$\delta^r_t = r_t - \mathcal{V}_{t-1}(s) \qquad \qquad \delta^s_t = 1 - \mathcal{T}_{t-1}(cs, us)$$

Goal-tracking signatures

Gaze

Schad et al., in prep, Gläscher et al. 2010 Neuron

Double dissociation between ST and GT

Schad et al., in prep

RL in mental health

Double dissociation between ST and GT

Schad et al., in prep

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

Pavlovian vs Instrumental paradigms

Table 1Types of values

	Model-free	Model-based
Pavlovian (state) values	$\mathcal{V}^{MF}(s)$	$\mathcal{V}^{MB}(s)$
Instrumental (state-action) values	$\mathcal{Q}^{MF}(s,a)$	$\mathcal{Q}^{MB}(s, a)$

Huys et al., 2014 Prog Neurobiol

Pavlovian-Instrumental transfer

$$\mathcal{Q}(s,a) + \mathcal{V}(s)$$
 if natural $\mathcal{Q}(s,a)$ else

"Pavlovian" unconditioned responses

Innate evolutionary strategies

Hirsch and Bolles 1980 Ethology

Innate evolutionary strategies

Hirsch and Bolles 1980 Ethology

RL in mental health

Quentin Huys, TNU/PUK

Innate evolutionary strategies

Hirsch and Bolles 1980 Ethology

RL in mental health

PIT paradigms

Separate

Joint?

Affective go / nogo task

Guitart-Masip, Huys et al. 2012

RL in mental health

Affective go / nogo task

Guitart-Masip, Huys et al. 2012

Affective go / nogo task

Guitart-Masip, Huys et al. 2012

	Go	INOgo
Rewarded		
Avoids loss		

Basic

$$p_t(a|s) \propto \mathcal{Q}_t(s,a)$$
$$\mathcal{Q}_{t+1}(s,a) = \mathcal{Q}_t(s,a) + \alpha(r_t - \mathcal{Q}_t(s,a))$$

Guitart et al., 2012 J Neurosci

Basic + bias

$$p_t(go|s) \propto \mathcal{Q}_t(s, go) + bias(go)$$
$$p_t(nogo|s) \propto \mathcal{Q}_t(s, nogo)$$
$$\mathcal{Q}_{t+1}(s, a) = \mathcal{Q}_t(s, a) + \alpha(r_t - \mathcal{Q}_t(s, a))$$

Avoids loss

Rewarded

Go

Basic + bias

$$p_t(go|s) \propto \mathcal{Q}_t(s, go) + bias(go)$$
$$p_t(nogo|s) \propto \mathcal{Q}_t(s, nogo)$$
$$\mathcal{Q}_{t+1}(s, a) = \mathcal{Q}_t(s, a) + \alpha(r_t - \mathcal{Q}_t(s, a))$$

Avoids loss

Rewarded

Nogo

Go

Avoids loss

Rewarded

Basic + bias + Pavlovian influence

 $p_t(go|s) \propto \mathcal{Q}_t(s, go) + bias(go) + \pi \mathcal{V}_t(s)$ $p_t(nogo|s) \propto \mathcal{Q}_t(s, nogo)$ $\mathcal{Q}_{t+1}(s, a) = \mathcal{Q}_t(s, a) + \alpha(r_t - \mathcal{Q}_t(s, a))$ $\mathcal{V}_{t+1}(s) = \mathcal{V}_t(s) + \alpha(r_t - \mathcal{V}_t(s))$

Nogo

Go

Avoids loss

Rewarded

Basic + bias + Pavlovian influence

 $p_t(go|s) \propto \mathcal{Q}_t(s, go) + bias(go) + \pi \mathcal{V}_t(s)$ $p_t(nogo|s) \propto \mathcal{Q}_t(s, nogo)$ $\mathcal{Q}_{t+1}(s, a) = \mathcal{Q}_t(s, a) + \alpha(r_t - \mathcal{Q}_t(s, a))$ $\mathcal{V}_{t+1}(s) = \mathcal{V}_t(s) + \alpha(r_t - \mathcal{V}_t(s))$

Nogo

Go

Avoids loss

Rewarded

Basic + bias + Pavlovian influence

 $p_t(go|s) \propto \mathcal{Q}_t(s, go) + bias(go) + \pi \mathcal{V}_t(s)$ $p_t(nogo|s) \propto \mathcal{Q}_t(s, nogo)$ $\mathcal{Q}_{t+1}(s, a) = \mathcal{Q}_t(s, a) + \alpha(r_t - \mathcal{Q}_t(s, a))$ $\mathcal{V}_{t+1}(s) = \mathcal{V}_t(s) + \alpha(r_t - \mathcal{V}_t(s))$

Model comparison: overfitting?

Model comparison: overfitting?

Model comparison: overfitting?

Example code

- www.cmod4mh.org/emfit.zip
- batchRunEMfit('mAffectiveGoNogo')
 - will generate example data
 - fit all models in modelList.m
 - perform model comparison
 - generate surrogate data
 - generate plots for basic sanity checks
- final model is llbaepxb.m

Threat of shock

Mkrtchian et al., 2017 Biol. Psychiatry

Threat potentiates aversive Pavlovian bias in anxious individuals

Mkrtchian et al., 2017 Biol. Psychiatry

Quentin Huys, TNU/PUK

Escape vs avoidance

Millner et al., 2018 J Cog Neurosci

Escape vs avoidance

Millner et al., 2018 J Cog Neurosci

Escape vs avoidance

Millner et al., 2018 J Cog Neurosci

Choices and RTs

$$\mu_t = \beta_0 + \beta_1 [Q_t(s_t, g_0) - Q_t(s_t, n_0 - g_0)]$$

separate starting points for escape and avoidance

Millner et al., 2018

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

Learning from rewards in Sz

Transfer Pairs		
Go	NoGo	
AC	BC	
AD	BD	
AE	BE	
AF	BF	

Waltz et al., 2007

Learning from rewards and losses in Sz

RL in mental health

Learning from rewards and losses in Sz

Q learning to represent value

$$\mathcal{Q}_t(s,a) = \mathcal{Q}_{t-1}(s,a) + \alpha(r_t - \mathcal{Q}_{t-1}(s,a))$$

Actor-critic to represent choice quality independent of value

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha \,\delta_t$$
$$\delta_t = r_t - \mathcal{V}_{t-1}(s)$$
$$w_t(a, s) = w_{t-1}(a, s) + \alpha_c \,\delta_t$$

FW-FLA

0.9

0.8

0.7

0.6

0.5

Q

AC

Reversal learning

Waltz and Gold 2007

RL in mental health

Quentin Huys, TNU/PUK

Reversal models

- Standard RW Q learning models $Q_t(s, a) = Q_{t-1}(s, a) + \alpha \delta_t$
- Double-updated Q learning models $Q_t(s, \bar{a}) = Q_{t-1}(s, \bar{a}) - \alpha \, \delta_t$
- Hidden Markov Model
 - captures actual inference
 - allows definition of subjectively informative events

 $p(s_t|o_1,\cdots,o_{t-1})$

 $p(s_t|o_1,\cdots,o_{t-1})$

$$p(s_t | o_1, \cdots, o_{t-1})$$

$$p(s_t | o_1, \cdots, o_t) = \frac{p(o_t | s_t) p(s_t | o_1, \cdots, o_{t-1})}{Z}$$

$$p(s_t|o_1, \cdots, o_{t-1})$$

$$p(s_t|o_1, \cdots, o_t) = \frac{p(o_t|s_t) p(s_t|o_1, \cdots, o_{t-1})}{Z}$$

$$p(s_{t+1}|o_1, \cdots, o_t) = \sum_s p(s_{t+1}|s) p(s|o_1, \cdots, o_t)$$

$$p(s_t|o_1, \cdots, o_{t-1})$$

$$p(s_t|o_1, \cdots, o_t) = \frac{p(o_t|s_t) p(s_t|o_1, \cdots, o_{t-1})}{Z}$$

$$p(s_{t+1}|o_1, \cdots, o_t) = \sum_s p(s_{t+1}|s) p(s|o_1, \cdots, o_t)$$

Reversal models

Schlagenhauf et al., 2014
Subjectively informative events

Schlagenhauf et al., 2014

Subjectively informative events

Schlagenhauf et al., 2014

Collins et al., 2014 J Neurosci

RL in mental health

Collins et al., 2014 J Neurosci

RL model simulation

Collins et al., 2014 J Neurosci

Collins et al., 2014 J Neurosci

Only working memory is impaired

Collins et al., 2014 J Neurosci

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

The role of dopamine

Schultz et al., 1997 Science, Kravitz et al., 2012 Nature

Go and nogo learning

Train

Frank et al., 2004 Science

RL in mental health

Neural network model

Frank 2005 J Cog Neurosci

OpAL

- Critic update:
 - $\delta_t = r_t Q_t(s, a)$
 - $Q_{t+1}(s,a) = Q_t(s,a) + \alpha_C \delta_t$
- Actor update:
 - $G_{t+1}(s,a) = G_t(s,a) + \alpha_G x (+ \delta) x G_t(s,a)$
 - $N_{t+1}(s,a) = N_t(s,a) + \alpha_N x (-\delta) x N_t(s,a)$
- Actor choice
 - Act(s,a) = $\beta_G G(s,a) \beta_N N(s,a)$
 - P(a | s) = softmax(Act(s,a))

OpAL

Collins and Frank Psych Review 2014

Effects OpAL captures

- Learning
- Performance
- Vigor
- Interactions

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

 $\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha(r_t - \mathcal{V}_{t-1}(s))$

Eldar et al., 2016 TICS

RL in mental health

 g_t

 V_t^{S}

 r_t

 $V_3^{\rm S}$

 r_{3}

 g_3

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha(r_t - \mathcal{V}_{t-1}(s))$$

RL in mental health

(B)

 g_1

 V_1^{S}

₩Į

 r_1

 g_2

 $V_2^{\rm S}$

 r_2

Quentin Huys, TNU/PUK

Eldar et al., 2016 TICS

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha(r_t - \mathcal{V}_{t-1}(s))$$

$$m_{t=1} = m_t + \alpha'_t((r_t - \mathcal{V}_t(s)) - m_t)$$

Eldar et al., 2016 TICS

RL in mental health

 V_t^{S}

 r_t

 $V_3^{\rm S}$

 r_{3}

 $V_2^{\rm S}$

 r_2

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha(r_t - \mathcal{V}_{t-1}(s))$$

$$m_{t=1} = m_t + \alpha'_t ((r_t - \mathcal{V}_t(s)) - m_t)$$

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha (f * m_{t-1} + r_t - \mathcal{V}_{t-1}(s))$$

Eldar et al., 2016 TICS

RL in mental health

 V_1^S

₩Į

 r_1

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha(r_t - \mathcal{V}_{t-1}(s))$$

$$m_{t=1} = m_t + \alpha'_t ((r_t - \mathcal{V}_t(s)) - m_t)$$

$$\mathcal{V}_t(s) = \mathcal{V}_{t-1}(s) + \alpha (f * m_{t-1} + r_t - \mathcal{V}_{t-1}(s))$$

Eldar et al., 2016 TICS

Mood fluctuations

Eldar et al., 2016 TICS

Reinforcer interaction

RL in mental health

2018 Computational Psychiatry Satellite @ SOBP

Momentum captures changes in reward

Eldar et al., 2015 Nat. Comm.

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

The cognitive model of depression

Metareasoning is the internal process by which we choose what to think about.

Studying metareasoning

Huys et al., 2012 PLoS CB, Huys et al., 2015 PNAS, Lally*, Huys* et al., 2017 J. Neurosci

Studying metareasoning

Huys et al., 2012 PLoS CB, Huys et al., 2015 PNAS, Lally*, Huys* et al., 2017 J. Neurosci

Psychochess

Solving a binary decision-tree

Optimal sequences containing losses

Huys et al., 2012 PLoS CB, Huys et al., 2015 PNAS, Lally*, Huys* et al., 2017 J. Neurosci

2018 Computational Psychiatry Satellite @ SOBP

Adaptive pruning model

Measuring metareasoning

If evaluated all branches fully

$$\mathcal{Q}^{lo}(\mathbf{a}) = \sum_{j=1}^{a} r_j(\mathbf{a})$$

- If stopped with probability p at every evaluation $Q^{d}(\mathbf{a}) = \sum_{i=1}^{d} (1-\gamma)^{i-1} r_{i}(\mathbf{a})$
- If stopped with different probabilities

$$\mathcal{Q}^{p}(\mathbf{a}) = \sum_{j=1}^{d} \left(1 - \gamma_{G}\right)^{x-1} \left(1 - \gamma_{S}\right)^{y-1} r_{j}(\mathbf{a})$$

Huys et al., 2012, PLoS CB

RL in mental health

Huys et al., 2012, PLoS CB

RL in mental health

Huys et al., 2012, PLoS CB

Huys et al., 2012, PLoS CB

Amemory and Graybiel 2012, Amat et al., 2005; Siegle et al., 2012; Cooney et al. 2010

Necessary for helplessness

Amemory and Graybiel 2012, Amat et al., 2005; Siegle et al., 2012; Cooney et al. 2010

Necessary for helplessness

Predicts treatment response

Amemory and Graybiel 2012, Amat et al., 2005; Siegle et al., 2012; Cooney et al. 2010

Predicts treatment response

Correlates with rumination

SaACC

Amemory and Graybiel 2012, Amat et al., 2005; Siegle et al., 2012; Cooney et al. 2010

Pruning - sgACC and rumination

- fMRI too slow to pinpoint pruning events
- trial by trial measure of "pruning urge"

$$p_t = D_{KL} \left(p(\mathbf{a}_t | \mathcal{Q}, \gamma_S = \gamma_G) || p(\mathbf{a}_t | \mathcal{Q}, \gamma_S, \gamma_G) \right)$$

Lally*, Huys* et al., 2017 J. Neurosci.

Pruning and rumination

Outline

Depression	Addiction
OCD	Anxiety
Schizophrenia	Parkinson's
Mood	Metareasoning

Acknowledgements

► Zurich

- Isabel Berwian
- Jakob Heinzle
- Lars Kasper
- Roger Lüchinger
- Daniel Renz
- Inga Schnürer
- Erich Seifritz
- Klaas Enno Stephan
- Marius Tröndle
- Berlin / Dresden
 - Lorenz Deserno
 - Eva Friedel
 - Maria Garbusow
 - Martin Goelzer
 - Andreas Heinz
 - Stephan Nebe
 - Nils Krömer
 - Michael Rapp
 - Daniel Schad
 - Florian Schlagenhauf
 - Miriam Sebold
 - Michael Smolka
 - Christian Sommer

- Julia Wenzel
- Henrik Walter
- DFG groups Charite & TU Dresden
- ► UK
 - Michael Browning
 - Peter Dayan
 - Ray Dolan
 - Neir Eshel
 - Nial Lally
 - Jon Roiser
- Sweden
 - Marc Guitart-Masip
- ► US
 - Anne Collins
 - Michael Frank
 - Martin Paulus
 - Diego Pizzagalli

TCPW

TCPW

Meetings schedule Home

Participate Resources Login

Transcontinental Computational Psychiatry Workgroup

The Transcontinental Computational Psychiatry Workgroup (TCPW) organizes a monthly web-based meeting and a computational psychiatry satellite meeting with the Society of Biological Psychiatry. We hope to foster discussion and exchange between those involved in computational psychiatry-a rapidly growing, highly multidisciplinary field.

Videos of past meetings are here.

Next workgroup meeting

Network Analysis Tutorial

Eiko Fried

Tuesday, June 12th 2018 at 14:30 - 16:30 UTC (Other timezones) General participation info | Participate online | + Phone-in

TBC

University of Amsterdam

Eiko Fried, PhD Postdoctoral research fellow Psychological Methods

News

Postdoc @ UNIST & Seoul National University

EBPS Workshop: Using Computational Approaches to Build a Two-way Bridge Between Animals And Humans

Computational Psychiatry postdoc @ TU Dresden / Smolka lab

Computational psychiatry postdocs @ UCL

Zurich Computational Psychiatry Course Sep 10-14

London Computational Psychiatry Course 2018

Postdoc @ NIH in machine learning applied to MRI data

RL for mental health - Computational Psychiatry Satellite @ SOBP

Computational Psychiatry postdoc @ Oxford

Postdoctoral position in computational psychiatry @ UiT The Arctic University of Norway

Meetings

Title TBC - Sam Gershman Sep 12th 2018

Title TBC - Yael Niv Aug 13th 2018

Title TBC - Leanne Williams Jul 24th 2018

Network Analysis Tutorial - Eiko Fried Jun 12th 2018

Pavlovian control of escape: General effects and relevance to suicidal behaviors - Alexander Millner May 03rd 2018

www.cmod4mh.org

RL in mental health

2018 Computational Psychiatry Satellite @ SOBP

On the computational structure of mood and anxiety disorders

Algorithms for survival: characterising anxiety-like behavioural inhibition Dominik Bach

Computational models of effort-based choice in patients with major depression and schizophrenia Jessica Cooper

The interaction between mood and reward learning Yael Niv

A Computational Approach to Understanding Motivational Symptoms in Depression Jonathan Roiser

Feedback please!

https://tnusurvey.ethz.ch/index.php/472246