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Disclaimer

‣ tutorial focus on analysing data with RL models 

‣ very incomplete, selective and subjective review 

‣ lots of my own work for exposition
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Estimating the hyperparameters

‣ Effectively we now want to do gradient ascent 
on: 

‣ But this contains an integral over individual 
parameters: 

‣ So we need to: 
�̂ = argmax

�
p(A|�)

= argmax
�

�
d ⇥p(A|⇥) p(⇥|�)

d

d�
p(A|�)

p(A|�) =
�

d⇥p(A|⇥) p(⇥|�)
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Expectation Maximisation

‣ Iterate between 
• Estimating MAP parameters given prior parameters 
• Estimating prior parameters from MAP parameters

log p(A|⇣) = log

Z
d✓ p(A, ✓|⇣)

= log

Z
d✓ q(✓)

p(A, ✓|⇣)
q(✓)

�
Z

d✓ q(✓) log
p(A, ✓|⇣)

q(✓)

kth E step: q(k+1)(✓)  p(✓|A, ⇣(k))

kth M step: ⇣(k+1)  argmax
⇣

Z
d✓ q(✓) log p(A, ✓|⇣)

Jensen’s inequality
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EM with Laplace approximation

Prior mean = mean of MAP estimates

Prior variance depends on inverse Hessian S and variance 
of MAP estimates

M step: �(i+1)
µ =

1

K

⇤

k

mk

�(i+1)
⇥2 =

1

N

⇤

i

�
(mk)

2 + Sk

⇥
� (�(i+1)

µ )2

Take uncertainty of estimates
into account
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Simulations

‣ emfit toolbox 
• models and fitting for six experiments 

• basic Rescorla-Wagner 
• probabilistic reward task Pizzagalli et al., 2005 
• Affective Go/Nogo Guitart et al. 2012  
• Twostep Daw et al., 2011  
• Effort Gold et al., 2013  
• Pruning Huys et al, 2012, Lally et al., 2017  

• wrapper scripts 
• key function is emfit.m 

‣ www.cmod4mh.org/emfit.zip

http://www.cmod4mh.org/emfit.zip
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Outline

Depression Addiction

OCD Anxiety
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Anhedonia in depression

Willner et al., 1987; Dichter et al., 2010; Klepce et al., 2010

‣ Diminished interest or pleasure in response to 
stimuli that were previously perceived as 
rewarding 

‣ What is “stimuli”? What “states” does this 
correspond to in terms of RL?

M. Clepce et al. / Neuroscience Letters 471 (2010) 139–143 141

Fig. 1. Means and SEMs for patients’ BDI and SHAPS scores. Testing session one
(black column): depressive episode, testing session two (white column): remission;
asterisks indicate a statistically significant difference.

hedonic estimates between the testing sessions (intensity esti-
mates: p = 0.293, hedonic estimates: p = 0.153) (for means and SEMs
see Fig. 3).

Healthy controls versus depressed and remitted patients: in
order to exclude deficits in olfactory hedonics and intensity percep-
tion as trait markers of depression, we compared patients’ hedonic
estimates and intensity ratings to those of a matched control
group. Our ANOVAs revealed no significant differences in hedonic
and intensity ratings between patients and controls (means and
SEMs [VARUs]: hedonics: depressed patients: 1.89 ± 0.37, remit-
ted patients: 2.31 ± 0.48, controls: 1.98 ± 0.36; intensity: depressed
patients: 11.99 ± 0.6, remitted patients: 12.47 ± 0.93, controls:
12.43 ± 0.48), either during the depressed episode (hedonic rat-

Fig. 2. Means and SEMs of patients’ identification scores. Testing session one (black
column): depressive episode, testing session two (white column): remission; aster-
isks indicate a statistically significant difference.

Fig. 3. Means and SEMs of patients’ summed intensity ratings and summed relative
hedonic estimates over all odours. Testing session one (black column): depressive
episode, testing session two (white column): remission. VARU = visual analogue
rating unit.

ings: F = 0.567, p = 0.454; intensity ratings: F = 0.846, p = 0.361) or at
remission (hedonic ratings: F = 0.327, p = 0.571; intensity ratings:
F = 0.533, p = 0.471).

Relation of SHAPS scores, BDI scores and hedonic ratings: In the
acutely depressed group, we employed stepwise multiple linear
regression analyses investigating the relation (1) between SHAPS
scores and hedonic ratings and (2) between BDI scores and hedo-
nic ratings while controlling for possible influences of gender and
age. In the first regression model only the variable SHAPS score was
included in the regression equation (F = 7.246, p = 0.011, ˇ = −0.414,
R2 = 0.148). Accordingly, severity of reported anhedonia was able to
account for 14.8% of the variance of hedonic ratings in the depressed
group (for scatterplot see Fig. 4). In the second regression model
including BDI scores, gender and age as possible independent vari-
ables, no variable showed a significant predictive value for hedonic
ratings. In the depressive sample, gender and age did not influence
hedonic ratings.

Our pilot study in patients suffering from major depression
revealed no significant differences concerning odour intensity
and odour hedonics between subjects’ scores during an acute
episode and in a remitted state. However, a significant interrela-
tion between anhedonia and hedonic estimates during the acute
episode of depression could be demonstrated via regression anal-
ysis.

Recovery of the depressive status including anhedonia was char-
acterized precisely by significant improvements of BDI and SHAPS
scores. During the depressive episode, patients achieved a mean
BDI score of 24.73 and a mean SHAPS score of 4.68, signifying a
moderate state of clinically-significant depression.
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Fig. 1. The effects of stress on saccharin (0.1%) and water con- 
sumption. Single bottle tests were carried out in weeks G2, and 
two-bottle tests in weeks 3 5. The results are expressed as means 
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Fig. 2. The effects of stress and DMI on sucrose (1.0%) and water 
consumption. The results are expressed as means: C O N -  control, 
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Preference for saccharin decreased over time in stressed ani- 
mals [F(2,4+)=7,6, P<0 .01 ]  but  remained unchanged in 
control  animals [F(2, 44)= 1.8, NS]. As a result, on weeks 4 
and 5 preference for saccharin was significantly a t tenuated 
in stressed animals as compared  to controls  [F(1 ' 66)--4.6 
and 4.6, P<0.05] .  

E x p e r i m e n t  2, In stressed animals both  sucrose and water 
consumpt ion decreased over the first 3 weeks of  testing 
[Fig. 2: F(3,  to8)=10.3 and 3.9, P<0 .001  and P < 0 . 0 5 ,  re- 
spectively]; in control  animals sucrose consumpt ion  in- 
creased IF{3. to8)=3.6, P<0 .05 ]  and no change was seen 
in water consumpt ion [F(3, lo8) = 1.6, NS]. These changes 
were not  reflected in the preference analysis until  the 
3rd week, when sucrose preference in stressed animals was 
significantly reduced compared  to controls  
[Fig. 3 : F ( t ,  7a)=12.2, P<0.001] .  In vehicle-treated ani- 
mals, sucrose preference remained low in the stress group 
through weeks 4 and 5 [F(2" 32) = 3.8, P<0.05] .  

The effect of  DMI ,  after chronic t reatment  (2 weeks), 
was to increase sucrose consumpt ion and reinstate sucrose 
preference in stressed animals (Figs. 2 and 3), These effects 
are reflected in a significant increase over time in preference 
to sucrose, in DMI- t r ea t ed  stressed animals [F(2, 32) = 3.5, 
P <  0.05] and a significant difference between the baseline 
preference scores (week 3) and the D M I  reversal at  week 5 
[FI~, 32)=6.9, P<0.05] .  No  effect of  D M I  was seen after 
one week of  t reatment  [F(1, +8)= 0.1, NS]. 

Tota l  fluid intake in unstressed animals did not  differ 
significantly between sucrose- and saline-consuming groups 
[F~t, ~ ) = 0 . 1 ,  NS]. Nei ther  stressed nor  control  animals 
showed any significant change in saline consumpt ion (re- 
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Fig. 3. The effects of stress and DMI on preference for sucrose 
(1.0%) over water. The results are expressed as means (+  standard 
error): open bars - control; closed bars - stress ; C= vehicle pre- 
treatment; D = D M I  pretreatment. DMI was administered from 
week 3 to week 5 

sults not  shown) over the first 3 weeks of  the experiment. 
In contrast,  both  groups of  saline-consuming animals 
showed a significant reduction in water  intake during this 
time [F~3, 1o8)= 5.7 and 2.9, P <  0.0/ and 0.05, respectively]. 
As a result there was a tendency for preferences to increase 
over t ime in both stressed and control  groups [F~3, s , )= 2 . 5  
and 3.1, P < 0 . 1  and 0.05, respectively] but  there were no 
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Anhedonia in depression

Montague et al., 1996, Dunlop and Nemeroff 2007; Gard et al., 2006

‣ Anhedonia 
• inability to enjoy rewards 
• but assessed by introspection / recollection 
• maybe due to the expected values accessed? 
• the problem then must be learning

Qt(a, s) = Qt�1(a, s) + �(rt �Qt�1(a, s))
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Reward expectation

Pizzagalli et al., 2005 Biol Psych

Huys et al. Biology of Mood & Anxiety Disorders 2013, 3:12 Page 3 of 16
http://www.biolmoodanxietydisord.com/content/3/1/12
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Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2 log

(n(a1|sr) n(a1|sl)
n(a2 |sr) n(a2 |sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very
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Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:
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where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very

response bias from Block 1 to Block 3 (Newman-Keuls p ! .001),
with no group differences between Blocks 1 and 2 (p " .7).

Discriminability. The two-way ANOVA revealed no signifi-
cant effects.

Reaction Time. The three-way ANOVA revealed no signifi-
cant effects involving Group.

Control Analyses. Because reinforcer ratio (the relative num-
ber of reinforcers received after a given correct response vs.
another correct response) is the critical variable for producing a
response bias (McCarthy and Davison 1979), it was important to
rule out the possibility that the groups differed in the number of
feedback received during the experiment. Separate t tests re-
vealed that high and low BDI subjects received virtually identical
reward feedback [rich: 88.40 # 1.77 vs. 88.10 # 2.88; lean: 29.40
# .63 vs. 29.52 # .68; rich/lean ratio: 3.01 # .09 vs. 2.99 # .13;

all t (34) ! .56, all p " .50]. Finally, the two groups did not differ
in the number of participants allocated to the sessions in which
the short (high BDI: 8 of 15; low BDI: 11 of 21) or the long mouth
was the condition more frequently rewarded.

Correlations Between Self-Report Measures of Affect and
Changes in Response Bias (n ! 61)

One participant had a $Response Bias that was more than 4
SDs from the mean and thus was excluded from these analyses.3

Change in response bias from Block 1 to Block 3 (Block 3 %
Block 1) was negatively correlated with BDI “melancholic”
subscores (r & % .28, p ! .035, n & 61) assessed at Time 1. This
change in $Response Bias was not correlated with the Time 1
assessment of the Social Anhedonia (r & % .06, ns), Physical
Anhedonia (r & % .06, ns), or general positive affectivity
(PANAS-NA trait; r & % .09, ns) scores. Notably, $Response Bias
at Time 1 was negatively correlated with the total BDI score (r &
% .46, p ! .025, n & 25) and BDI “melancholic” subscore (r &
% .41, p ! .05, n & 25; Figure 4) at Time 2. (These correlations
remained significant when nonparametric Spearman Rank coef-
ficients were used).

To test the specificity of these findings and the predictive
value of response bias, two hierarchical regression analyses were
run. In the first, we tested whether $Response Bias at Time 1
predicted BDI “melancholic” subscores at Time 2 after control-
ling for BDI “melancholic” subscores at Time 1 (entered in the
first step) and general negative affectivity (PANAS-NA trait)

3This subject had an intermediate BDI score (BDI & 14) and did not fulfill
the inclusion criteria for the ANOVAs with the low and high BDI
groups. Because the subject’s accuracy, RT, and response bias were
within the mean # 2 SD, she was included in the ANOVAs with the
entire sample (n & 62).

Figure 2. Overall effect of task manipulation. Mean accuracy (A), reaction
time (B), response bias (C), and discriminability (D) for the entire sample
(n & 62). Error bars represent standard errors. For accuracy and RT, the rich
condition (black bars) refers to the stimulus associated with more frequent
reward, whereas the lean condition (light gray bars) refers to the stimulus
associated with less frequent reward.

Figure 3. Mean response bias (A) and (B) changes in response bias for
subjects with high (black bars; n & 15) and low (light gray bars; n & 21) Beck
Depression Inventory (BDI) scores. Error bars represent standard errors.
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Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2 log

(n(a1|sr) n(a1|sl)
n(a2 |sr) n(a2 |sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very

response bias from Block 1 to Block 3 (Newman-Keuls p ! .001),
with no group differences between Blocks 1 and 2 (p " .7).

Discriminability. The two-way ANOVA revealed no signifi-
cant effects.

Reaction Time. The three-way ANOVA revealed no signifi-
cant effects involving Group.

Control Analyses. Because reinforcer ratio (the relative num-
ber of reinforcers received after a given correct response vs.
another correct response) is the critical variable for producing a
response bias (McCarthy and Davison 1979), it was important to
rule out the possibility that the groups differed in the number of
feedback received during the experiment. Separate t tests re-
vealed that high and low BDI subjects received virtually identical
reward feedback [rich: 88.40 # 1.77 vs. 88.10 # 2.88; lean: 29.40
# .63 vs. 29.52 # .68; rich/lean ratio: 3.01 # .09 vs. 2.99 # .13;

all t (34) ! .56, all p " .50]. Finally, the two groups did not differ
in the number of participants allocated to the sessions in which
the short (high BDI: 8 of 15; low BDI: 11 of 21) or the long mouth
was the condition more frequently rewarded.

Correlations Between Self-Report Measures of Affect and
Changes in Response Bias (n ! 61)

One participant had a $Response Bias that was more than 4
SDs from the mean and thus was excluded from these analyses.3

Change in response bias from Block 1 to Block 3 (Block 3 %
Block 1) was negatively correlated with BDI “melancholic”
subscores (r & % .28, p ! .035, n & 61) assessed at Time 1. This
change in $Response Bias was not correlated with the Time 1
assessment of the Social Anhedonia (r & % .06, ns), Physical
Anhedonia (r & % .06, ns), or general positive affectivity
(PANAS-NA trait; r & % .09, ns) scores. Notably, $Response Bias
at Time 1 was negatively correlated with the total BDI score (r &
% .46, p ! .025, n & 25) and BDI “melancholic” subscore (r &
% .41, p ! .05, n & 25; Figure 4) at Time 2. (These correlations
remained significant when nonparametric Spearman Rank coef-
ficients were used).

To test the specificity of these findings and the predictive
value of response bias, two hierarchical regression analyses were
run. In the first, we tested whether $Response Bias at Time 1
predicted BDI “melancholic” subscores at Time 2 after control-
ling for BDI “melancholic” subscores at Time 1 (entered in the
first step) and general negative affectivity (PANAS-NA trait)

3This subject had an intermediate BDI score (BDI & 14) and did not fulfill
the inclusion criteria for the ANOVAs with the low and high BDI
groups. Because the subject’s accuracy, RT, and response bias were
within the mean # 2 SD, she was included in the ANOVAs with the
entire sample (n & 62).

Figure 2. Overall effect of task manipulation. Mean accuracy (A), reaction
time (B), response bias (C), and discriminability (D) for the entire sample
(n & 62). Error bars represent standard errors. For accuracy and RT, the rich
condition (black bars) refers to the stimulus associated with more frequent
reward, whereas the lean condition (light gray bars) refers to the stimulus
associated with less frequent reward.

Figure 3. Mean response bias (A) and (B) changes in response bias for
subjects with high (black bars; n & 15) and low (light gray bars; n & 21) Beck
Depression Inventory (BDI) scores. Error bars represent standard errors.

D.A. Pizzagalli et al BIOL PSYCHIATRY 2005;57:319–327 323
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(entered in the second step). Findings revealed that !Response
Bias at Time 1 continued to predict BDI “melancholic” subscores
at Time 2 even after controlling for these variables [!R2 " .19,
!F (1,20) " 4.83, p " .040]. When considering the total BDI
score, an identical hierarchical regression analysis showed only a
statistical trend [!R2 " .13, !F (1,20) " 3.79, p " .066].

Self-Report Measures of Participants with Positive (n ! 39)
Versus Negative (n ! 22) "Response Bias

When considering !Response Bias at Time 1, 36.07% of the
subjects had a negative change from Block 1 to Block 3,
indicating that these participants were not responsive to the

differential reinforcement schedule. As listed in Table 3, partici-
pants with negative !Response Bias at Time 1 reported higher
scores on various anhedonic measures at both Time 1 (BDI
melancholic subscore, Chapman’s Physical Anhedonia scale) and
Time 2 (BDI anhedonic subscore, BDI melancholic subscore,
Anhedonic Depression subscale of the MASQ) and continued to
have significantly lower !Response Bias at Time 2.

Test-Retest Reliability
Twenty-five participants performed the signal-detection task a

second time (38.28 # 20.72 days later). As shown in Figure 5,
!Response Bias at Time 1 and Time 2 were significantly corre-
lated (r " .57, p $ .004).

Discussion

Rooted within a classic view that a stimulus is rewarding if it
positively reinforces behavior (i.e., it reliably increases the
likelihood of behavior [Hull 1943; Rescorla and Wagner 1972]),
the goals of the present study were 1) to test the feasibility,
convergent validity, and predictive validity of a laboratory-based
measure of hedonic capacity based on a signal-detection ap-
proach; and 2) to test the hypothesis that elevated levels of
depressive, particularly anhedonic, symptoms were associated
with impaired reward responsiveness. Reward responsiveness
was objectively operationalized as the participants’ propensity to
modulate behavior as a function of prior exposure to reinforced
stimuli. The following findings emerged. First, the task revealed
robust behavioral differences, including a response bias, in favor
of the stimulus reinforced more frequently. Second, unlike
participants with low BDI scores, participants with elevated
depressive symptoms failed to show increases in response bias
toward the reinforcing stimulus, indicating reduced reward re-
sponsiveness. Importantly, high and low BDI participants did not
differ in their discriminability and RT scores, or in the number of
reward feedback received during the experiment, indicating that
group differences in reward responsiveness were not due to
differences in task difficulty, differential exposure to positive
feedback, or different stimulus–outcome contingencies. Third,
participants failing to develop a response bias throughout the

Figure 4. Scatterplot and Pearson’s correlation between !Response Bias
(Block 3 – Block1) at Time 1 and Beck Depression Inventory (BDI) “melan-
cholic” subscore at Time 2.

Table 3. Self-Report Data for Participants with Positive (n" 39) and Negative (n" 22) !Response Bias at Time 1

!Response Biasa $ 0 !Response Bias % 0

t pMean SD n Mean SD n

Time 1
BDI 12.86 8.49 22 9.52 6.76 39 1.69 .096
BDI Anhedonic Scoreb 1.95 1.84 22 1.38 1.25 39 1.44 .155
BDI Melancholic Scorec 4.09 2.74 22 2.87 1.47 39 2.27 .027
Social Anhedoniad 6.70 7.04 20 5.78 4.12 37 .62 .537
Physical Anhedoniad 12.95 6.98 20 9.59 6.17 37 1.87 .067

Time 2
BDI 13.17 7.35 9 6.31 4.92 16 2.80 .010
BDI Anhedonic Scoreb 2.22 2.11 9 .75 1.06 16 2.34 .028
BDI Melancholic Scorec 4.33 3.57 9 1.88 1.78 16 2.31 .030
MASQ AD 70.22 12.65 9 52.31 16.15 13 2.78 .012
!Response Biasa & .01 .17 8 .21 .24 16 & 2.26 .034

BDI, Beck Depression Inventory-II (Beck et al 1996); MASQ, Mood and Anxiety Symptom Questionnaire (Watson et al 1995); AD, Anhedonic Depression.
aDifference score between response bias in Blocks 1 and 3 (!Response Bias: Block 3 & Block 1).
bSum of BDI items associated with anhedonic symptoms: loss of pleasure (item 4), loss of interest (item 12), loss of energy (item 15), and loss of interest in

sex (item 21).
cSum of BDI items associated with melancholic symptoms: loss of pleasure (item 4), guilty feelings (item 5), agitation (item 11), loss of interest (item 12),

early morning awakening (item 16b), and loss of interest in sex (item 21).
dRevised Physical and Social Anhedonia Scales (Chapman and Chapman, unpublished data; Chapman et al 1976; Chapman et al 1980).
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Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2 log

(n(a1|sr) n(a1|sl)
n(a2 |sr) n(a2 |sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very
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Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2 log

(n(a1|sr) n(a1|sl)
n(a2 |sr) n(a2 |sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very

basic RW

Qt(a, s) = Qt�1(a, s) + ✏(rt �Qt�1(a, s))
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Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
2 log

(n(a1|sr) n(a1|sl)
n(a2 |sr) n(a2 |sl)

)
(1)

where sr and sl indicate presentation of the rich and lean
stimulus, respectively, a1 and a2 are the two possible key
presses, and n(a|s) is the number of times a particu-
lar choice was made in response to that stimulus. Each
count n was augmented by 1

2 to avoid numerical insta-
bilities. Outlier trials with very short (< 150 ms) or very

basic RW

Qt(a, s) = Qt�1(a, s) + ✏(rt �Qt�1(a, s))

Qt(a, s) = Qt�1(a, s) + ✏(⇢rt �Qt�1(a, s))

p(a|s) = eQ(a,s)

P
a0 eQ(a0,s)

allow for reward sensitivity differences



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

Modelling: first get the task

Huys et al., 2013 Biol Mood Anx

Huys et al. Biology of Mood & Anxiety Disorders 2013, 3:12 Page 3 of 16
http://www.biolmoodanxietydisord.com/content/3/1/12

500 ms 

1750 ms 

500 ms 

100 ms 

Correct!!
You won 
5 cents

short?
long?

Long correct: 
Short correct: 

75% rewarded
30% rewarded

Long correct: 
Short correct: 

30% rewarded
75% rewarded

Long = rich: 

Short = rich: 

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

R
es

po
ns

e 
B

ia
s

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

ε=0.03, γ=2

1 2 3
0

0.1

0.2

0.3

0.4

0.5

Block

ρ=2, γ=2

Control
Treatment

ρ=2
ρ=1

ε=0.04
ε=0.01

B

A C D E

F

Altering 
learning rate

Altering 
reward sensitivity

Prototypical
empirical pattern

Healthy Stress PPX Hx MDD BPD

0.6

0.8

1

F
ra

ct
io

n 
co

rr
ec

t

Figure 1 Task and typical behaviour. A: Task. Each trial had the following structure: 1) 500 ms presentation of a central fixation cross; 2) 500 ms
presentation of face without a mouth; 3) 100 ms presentation of long (13 mm) or short (11.5 mm) mouth inside the face; 4) participants reported
whether the mouth was long or short by key-press (‘Z’ or ‘/’ on US keyboard, counterbalanced); 5) Face without mouth remained on screen until
participant response. Short and long stimuli were each presented 50 times per block in pseudorandom sequence avoiding more than three
repetitions in a row. Adapted from [10]. B: Reward schedule. One response (counterbalanced across participants) had a higher reward expectation.
Correct identification of that “rich” stimulus was more likely to be rewarded (75% probability) than correct identification of the other, “lean”, stimulus
(30% probability). There was no punishment. If in doubt, choosing the more rewarded stimulus was beneficial. C: Surrogate simulated data showing
prototypical response evolution. The dark bars show a hypothetical control group, developing a strong response bias towards the more rewarded
response over the three blocks of 100 trials. The light bars show a prototypical treatment group with a reduced response bias. D-E: Surrogate
simulated data generated from a simple reinforcement learning (‘Stimulus-action’) model. Both a reduction in reward sensitivity (D) and a reduction
in learning rate (E) can roughly reproduce the pattern in the data (C). F: Percent correct responses for each of the 392 experimental sessions. Each
black point represents one experimental session. Vertical bars demarcate datasets. Red horizontal line represents chance performance for each
session. Four participants performed below chance (red). Sixty-three out of 392 experimental sessions were not fitted better than chance by model
‘Belief’ (binomial test; blue). Of these, 58 out of 63 were in the Stress dataset, in which performance was generally worst.

Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:

1
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lar choice was made in response to that stimulus. Each
count n was augmented by 1
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Correct responses to one stimulus, designated “rich”, were
more likely to be rewarded than correct responses to the
other stimulus, designated “lean” (Figure 1B). No feedback
was given on other trials, including incorrect trials, and no
explicit information about the asymmetry was provided.
Participants were explicitly encouraged to win as much
money as possible, and so could benefit from reporting
the rich, rather than the lean, stimulus when in doubt.
One measure of the tendency to do this is the response
bias [10]:
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Figure 2 Model performance. A: Model comparison. Group-level log Bayes factors !iBIC for each model relative to model ‘Belief’ across all
datasets. A difference ≥ 10 in this measure is strong evidence for the model with the lower score. B: The parameter γ in the model largely captures
the probability with which participants made a correct choice. Note that, by design of the task, this explicitly captures the effect of symmetric
instructions and perceptual difficulties, rather than the asymmetric effect of rewards.
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Figure 3 Correlates of anhedonia. A: Correlation coefficients for all pairwise correlations between questionnaire measures. All are highly
significant (p < .01), except for the correlation between anhedonic depression and anxious anxiety, denoted by a red dot. B: Hierarchical weighted
regression analysis across all datasets, involving all 255 participants with a full set of BDI, BDA and MASQ scores. The plots shows the linear
coefficients between anhedonic depression (AD) score and the reward sensitivity and learning rate parameters ρ and ϵ . Each bars shows one linear
coefficient; the red error bars indicate ± 1 standard error; and the green error bars indicate the 99.4% confidence interval (corresponding to a
Bonferroni corrected level p = .05/8). AD is significantly and negatively correlated with the reward sensitivity ρ , but not significantly correlated with
the learning rate ϵ . C: Scatter plot of anhedonic depression against reward sensitivity. Size of dots scale with weight (inference precision). D: Scatter
plot of reward sensitivity vs. learning rate. E: Significance of correlations across parameter estimates from 70 surrogate datasets. There is a consistent
and stably significant correlation between AD and reward sensitivity ρ , but not between AD and learning rate ϵ .
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Figure 3 Correlates of anhedonia. A: Correlation coefficients for all pairwise correlations between questionnaire measures. All are highly
significant (p < .01), except for the correlation between anhedonic depression and anxious anxiety, denoted by a red dot. B: Hierarchical weighted
regression analysis across all datasets, involving all 255 participants with a full set of BDI, BDA and MASQ scores. The plots shows the linear
coefficients between anhedonic depression (AD) score and the reward sensitivity and learning rate parameters ρ and ϵ . Each bars shows one linear
coefficient; the red error bars indicate ± 1 standard error; and the green error bars indicate the 99.4% confidence interval (corresponding to a
Bonferroni corrected level p = .05/8). AD is significantly and negatively correlated with the reward sensitivity ρ , but not significantly correlated with
the learning rate ϵ . C: Scatter plot of anhedonic depression against reward sensitivity. Size of dots scale with weight (inference precision). D: Scatter
plot of reward sensitivity vs. learning rate. E: Significance of correlations across parameter estimates from 70 surrogate datasets. There is a consistent
and stably significant correlation between AD and reward sensitivity ρ , but not between AD and learning rate ϵ .
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Figure 3 Correlates of anhedonia. A: Correlation coefficients for all pairwise correlations between questionnaire measures. All are highly
significant (p < .01), except for the correlation between anhedonic depression and anxious anxiety, denoted by a red dot. B: Hierarchical weighted
regression analysis across all datasets, involving all 255 participants with a full set of BDI, BDA and MASQ scores. The plots shows the linear
coefficients between anhedonic depression (AD) score and the reward sensitivity and learning rate parameters ρ and ϵ . Each bars shows one linear
coefficient; the red error bars indicate ± 1 standard error; and the green error bars indicate the 99.4% confidence interval (corresponding to a
Bonferroni corrected level p = .05/8). AD is significantly and negatively correlated with the reward sensitivity ρ , but not significantly correlated with
the learning rate ϵ . C: Scatter plot of anhedonic depression against reward sensitivity. Size of dots scale with weight (inference precision). D: Scatter
plot of reward sensitivity vs. learning rate. E: Significance of correlations across parameter estimates from 70 surrogate datasets. There is a consistent
and stably significant correlation between AD and reward sensitivity ρ , but not between AD and learning rate ϵ .
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the probability with which participants made a correct choice. Note that, by design of the task, this explicitly captures the effect of symmetric
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Figure 3 Correlates of anhedonia. A: Correlation coefficients for all pairwise correlations between questionnaire measures. All are highly
significant (p < .01), except for the correlation between anhedonic depression and anxious anxiety, denoted by a red dot. B: Hierarchical weighted
regression analysis across all datasets, involving all 255 participants with a full set of BDI, BDA and MASQ scores. The plots shows the linear
coefficients between anhedonic depression (AD) score and the reward sensitivity and learning rate parameters ρ and ϵ . Each bars shows one linear
coefficient; the red error bars indicate ± 1 standard error; and the green error bars indicate the 99.4% confidence interval (corresponding to a
Bonferroni corrected level p = .05/8). AD is significantly and negatively correlated with the reward sensitivity ρ , but not significantly correlated with
the learning rate ϵ . C: Scatter plot of anhedonic depression against reward sensitivity. Size of dots scale with weight (inference precision). D: Scatter
plot of reward sensitivity vs. learning rate. E: Significance of correlations across parameter estimates from 70 surrogate datasets. There is a consistent
and stably significant correlation between AD and reward sensitivity ρ , but not between AD and learning rate ϵ .
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Figure 3 Correlates of anhedonia. A: Correlation coefficients for all pairwise correlations between questionnaire measures. All are highly
significant (p < .01), except for the correlation between anhedonic depression and anxious anxiety, denoted by a red dot. B: Hierarchical weighted
regression analysis across all datasets, involving all 255 participants with a full set of BDI, BDA and MASQ scores. The plots shows the linear
coefficients between anhedonic depression (AD) score and the reward sensitivity and learning rate parameters ρ and ϵ . Each bars shows one linear
coefficient; the red error bars indicate ± 1 standard error; and the green error bars indicate the 99.4% confidence interval (corresponding to a
Bonferroni corrected level p = .05/8). AD is significantly and negatively correlated with the reward sensitivity ρ , but not significantly correlated with
the learning rate ϵ . C: Scatter plot of anhedonic depression against reward sensitivity. Size of dots scale with weight (inference precision). D: Scatter
plot of reward sensitivity vs. learning rate. E: Significance of correlations across parameter estimates from 70 surrogate datasets. There is a consistent
and stably significant correlation between AD and reward sensitivity ρ , but not between AD and learning rate ϵ .
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previously played the risky decision task (eTable in the Supple-
ment). Of these participants, 918 (50%) were women, 593 (32%)
were younger than 30 years, 543 (30%) had a history of depres-
sion, and 1290 (70%) had no history of depression.

Procedures
Probabilistic Reward Task
The probabilistic reward task was devoid of any learning re-
quirement. The task was specifically designed to ensure a simi-
lar level of performance in depressed and control participants
in terms of accuracy, reaction time, and earnings.19,30 In each
of 164 trials completed in the MRI scanner, participants chose
between 2 lotteries and were then shown the outcome of the
chosen lottery (eFigure 1 and eMethods in the Supplement).

Risky Decision Task
In each trial, participants made choices between safe and risky
options (eFigure 2A in the Supplement). Risky options were
monetary gambles with 2 potential outcomes. All choice out-
comes counted for real money. After every 2 to 3 trials, par-
ticipants were asked, “How happy are you at this moment?”
and moved a cursor along a line to record their current sub-
jective state. Participants completed 160 choice trials and 66
ratings. Chosen outcomes were resolved after a brief delay in
half of the gamble choices. In the other half of the choices, the
text “outcome added to total” was displayed. We also col-
lected data in this task using a smartphone app, The Great Brain
Experiment (http://www.thegreatbrainexperiment.com;
available free for iOS and Android operating systems). The app
features 8 cognitive science tasks (including “What makes me
happy?”) that replicate known laboratory findings.23,25,26,31

Participants completed 30 choice trials and 12 ratings. Risky
options were represented by spinners with equal probabilities
for 2 potential outcomes, and chosen gambles were resolved
immediately (eFigure 2B in the Supplement). Participants
started with an endowment of 500 points and tried to earn as
many points as possible.

fMRI Imaging
We recorded BOLD responses during the probabilistic reward
task using a 3T MRI scanner (3T Magnetom Trio; Siemens
Healthcare) and a 32-channel head coil. Whole-brain

T2*-weighted echo-planar imaging data were acquired using
a sequence designed to minimize dropout in the striatum,
frontal cortex, and amygdala.32 Physiological monitoring in-
cluded measurements of pulse and breathing. Preprocessing
and analysis of the echo-planar imaging data were performed
using statistical parametric mapping (SPM8; Wellcome Trust
Centre for Neuroimaging) following standard procedures
(eMethods in the Supplement).

Computational Modeling of Momentary Mood
We fitted an established computational model23,24 in which cer-
tain rewards (CRs) are chosen instead of a gamble, expected val-
ues (EVs) are the average return of chosen gambles, and RPEs re-
sultingfromthoseexpectationsallexert influencesonhappiness:

Happiness(t) = w0 + w1

t

j=1

t

j=1t

j=1

γ t− j CRj + w2 γ t− j EVj 

γ t− j RPEj+ w3

where t and j are trial numbers, w0 is a baseline mood parameter,
other weights (w) capture influences of different event types, and
0≤γ≤1 is a forgetting factor that makes more recent events more
influential than events in earlier trials with an exponential de-
cay. Terms for unchosen options were set to zero, and the RPE
wassettozerowhentheoutcomewasnotrevealed.Weusedhap-
piness as a proxy for what we refer to as momentary mood and
related these momentary assessments to clinical measures that
capture mood on longer time scales. We used a Bayesian model
comparison to validate the model, testing alternate models that
omit expectations or split RPE terms into their separate compo-
nents (eMethods in the Supplement).

Statistical Analysis
Nonparametric statistical tests that do not assume data are
normally distributed were used. These included Wilcoxon
signed rank and rank sum tests and Spearman correlation co-
efficients (ρ). Statistical tests were always performed on con-
tinuous variables when available. Performing statistical tests
on dichotomized continuous data can lead to artifactual
findings.33 We also computed correlations after regressing out
sex, educational level (having a university degree), and age.
All P values are 2-tailed. Significance was set at P < .05.

Table. Differences Between MDD and Control Groups

Characteristic
MDD Behavior
(n = 54)

MDD fMRI Only
(n = 32)

Control
(n = 20)

Statistical
Testa P Value

Women, No. (%) 34 (63) 20 (63) 10 (50) Fisher exact .40

Age, mean (SD), y 34.3 (11.1) 34.1 (9.7) 34.0 (8.3) t50 = 0.02 .98

Educational level, mean (SD), y 16.3 (2.2) 16.3 (2.4) 16.4 (1.9) t50 = −0.31 .76

HAM-D score, mean (SD) 15.6 (4.1) 16.6 (2.5) 0.6 (1.0) t50 = 27.4 <.001

PHQ score, mean (SD) 15.8 (4.7) 16.9 (3.6) 1.1 (1.7) t50 = 18.3 <.001

Medication, No. (%)b 33 (61) 23 (72) 0 Fisher exact <.001

Abbreviations: fMRI, functional magenetic resonance imaging;
HAM-D, Hamilton Scale for Depression; MDD, major depressive disorder;
PHQ, Patient Health Questionnaire.
a Statistical tests compared depressed fMRI and healthy control samples.
b Antidepressant medications included bupropion hydrochloride (1 participant),

citalopram hydrobromide (10), fluoxetine hydrochloride (8), mirtazapine (3),
nortriptyline hydrochloride (1), quetiapine fumarate (1), sertraline
hydrochloride (8), and venlafaxine (2). Only 1 participant with MDD was taking
more than 1 antidepressant (mirtazapine and quetiapine).
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aversion (Kahneman and Tversky, 1979; Tversky and Kahneman,
1992; Sokol-Hessner et al., 2009), with an alternative decision
model that incorporates a Pavlovian approach–avoidance influ-
ence. Although subjective feelings relate to objective economic
variables, including wealth (Diener et al., 1999; Layard, 2005;
Oswald and Wu, 2010), the relationship between feelings and
rewards remains murky (Kahneman and Deaton, 2010). Experi-
ence sampling methods are widely used in well-being research to
relate subjective states to daily life events (Csikszentmihalyi and
Larson, 1987; Killingsworth and Gilbert, 2010). Adapting these
methods to the laboratory setting has allowed us to develop a
model for momentary subjective well-being (Rutledge et al.,
2014) and we employ that approach here.

Based on previous literature, we predicted that L-DOPA
would increase the number of risky options chosen (Molina et al.,
2000; Cools et al., 2003; St Onge and Floresco, 2009; Stopper et
al., 2014) and, given the relationship between prediction errors
and momentary happiness, we expected that this manipulation
would also influence its expression here. The design that we im-
plement also enabled us to test the extent to which these effects

depend on outcome valence, a pertinent question that speaks to
reported asymmetries related to dopamine (Frank et al., 2004;
Bayer and Glimcher, 2005; Pessiglione et al., 2006; Rutledge et al.,
2009; Schmidt et al., 2014).

Materials and Methods
Subjects. Thirty healthy, young adults (age ! 23.4 " 3.8 years, mean "
SD, 19 females) took part in the experiment. Subjects had a mean body
weight of 66.3 kg (range, 47–96) and a mean body mass index of 23.0
(range, 17.0 –29.8). Subjects were screened to ensure no history of neu-
rological or psychiatric disorders and were not on any active medica-
tions. Subjects were endowed with £20 at the beginning of each
experimental session and paid according to overall performance after
completion of the entire study by bank transfer. The study was approved
by the Research Ethics Committee of University College London and all
subjects gave informed consent.

Study procedure. This was a within-subject double-blind placebo-
controlled study. Subjects participated on 2 occasions, typically 1 week
apart at a similar time of day, performing the same task on both days, 60
min after ingestion of either L-DOPA (150 mg of L-DOPA and 37.5 mg of
benserazide mixed in orange juice) or placebo (500 mg of ascorbic acid

Figure 1. Task design and performance on placebo and L-DOPA. A, In each of 300 trials, subjects made choices between safe and risky options. In 100 gain trials, the worst gamble outcome was
zero. In 100 loss trials, the best gamble outcome was zero. In 100 mixed trials, both gamble outcome gains and losses were possible. Chosen gambles were resolved after a brief delay period. Subjects
were also asked after every 3– 4 choice trials “how happy are you at this moment?” and indicated their responses by moving a slider. B, On average, subjects (n ! 30) gambled most in gain trials,
less in mixed trials, and least in loss trials on both placebo and L-DOPA. Error bars indicate SEM. C, Subjects did not gamble more in mixed and loss trials on L-DOPA compared with placebo, but did
gamble more in gain trials. *p # 0.05. D, Subjects who received higher effective drug doses chose more gain gambles on L-DOPA than placebo ( p # 0.01).
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Discussion
We investigated the role of dopamine in value-based decision
making by considering both choices and the subjective feelings
elicited by rewards resulting from those choices. Boosting dopa-
mine levels pharmacologically using L-DOPA dose-dependently

increased the number of gambles chosen
in trials with potential gains, but not in
trials in which losses were possible. Fur-
thermore, self-reports of subjective well-
being were explained by the recent history
of expectations and RPEs resulting from
those expectations, as we showed previ-
ously (Rutledge et al., 2014). L-DOPA
boosted the increase in happiness that fol-
lowed small rewards, outcomes that on
placebo increased happiness by only a
small amount.

It is natural to consider the effects as
relating to an influence of L-DOPA on
phasic dopamine release (Pessiglione et
al., 2006), which is associated with RPEs
(Schultz et al., 1997). The same specificity
for gain over loss trials has been observed
in contexts in which phasic dopamine is
associated with learning (Pessiglione et
al., 2006; Schmidt et al., 2014), although
our task was designed to obviate learning
to allow testing of other roles for dopa-
mine. That L-DOPA effects are specific to
gain trials (and not also to mixed trials)
suggests that RPEs associated with the
trial type may be critical for the effect; in
this task design, even the worst gain trial is
better than the average trial and so likely
inspires dopamine release. Our model
proposes that L-DOPA amplifies ap-
proach toward potential gains but does
not affect avoidance of potential losses.
We had no prediction as to how approach
and avoidance influences would combine
when options are associated with both po-
tential gains and losses, as in the mixed
trials. Our results suggest that these influ-
ences do not combine linearly and that the
presence of a potential loss negates any
tendency to approach mixed gambles that
might be amplified under L-DOPA. Our
results do not support a proposal that
modulating dopaminergic transmission
should affect loss aversion (Clark and
Dagher, 2014), although it is possible that
another drug that affects the valuation
process might increase gambling in mixed
trials.

One possible interpretation of the
valence-dependent but value-indepen-
dent terms in the model is that they
represent forms of Pavlovian approach
(Dayan et al., 2006; Bushong et al., 2010)
and withdrawal (Huys et al., 2011; Wright
et al., 2012) in the face of gains and losses,
respectively. Such Pavlovian actions are
elicited without regard to their actual con-

tingent benefits. The modulation of !gain by L-DOPA is consis-
tent with an association between dopaminergic RPEs and
incentive salience (Berridge and Robinson, 1998; McClure et al.,
2003), which can, in principle, provide an account of dopaminer-
gic drug effects on pathological gambling and impulsive behavior

Figure 6. Rewards and expectations explain momentary subjective well-being. A, B, Happiness ratings and cumulative task
earnings across subjects (n ! 30) on placebo (A) and L-DOPA (B) (placebo: r 2 ! 0.49 " 0.25; L-DOPA: r 2 ! 0.45 " 0.25).
Happiness model fits are displayed for the model in C. Subjects completed 300 choice trials and made a rating after every 3– 4 trials
for a total of 90 ratings. C, The computational model that best explained momentary happiness had positive weights for certain
rewards, gamble EVs, and gamble RPEs. Error bars indicate SEM. D, An alternative computational model included separate positive
and negative RPE terms. E, F, In trials with potential gains but not losses, happiness was higher after gamble wins than losses on
both placebo and L-DOPA (both p # 0.05). Happiness was higher after the small rewards from low-value gain gambles on L-DOPA
compared with placebo (E), but not for the large rewards from high-value gain gambles (F ). Error bars indicate SEM. *p # 0.05.
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previously played the risky decision task (eTable in the Supple-
ment). Of these participants, 918 (50%) were women, 593 (32%)
were younger than 30 years, 543 (30%) had a history of depres-
sion, and 1290 (70%) had no history of depression.

Procedures
Probabilistic Reward Task
The probabilistic reward task was devoid of any learning re-
quirement. The task was specifically designed to ensure a simi-
lar level of performance in depressed and control participants
in terms of accuracy, reaction time, and earnings.19,30 In each
of 164 trials completed in the MRI scanner, participants chose
between 2 lotteries and were then shown the outcome of the
chosen lottery (eFigure 1 and eMethods in the Supplement).

Risky Decision Task
In each trial, participants made choices between safe and risky
options (eFigure 2A in the Supplement). Risky options were
monetary gambles with 2 potential outcomes. All choice out-
comes counted for real money. After every 2 to 3 trials, par-
ticipants were asked, “How happy are you at this moment?”
and moved a cursor along a line to record their current sub-
jective state. Participants completed 160 choice trials and 66
ratings. Chosen outcomes were resolved after a brief delay in
half of the gamble choices. In the other half of the choices, the
text “outcome added to total” was displayed. We also col-
lected data in this task using a smartphone app, The Great Brain
Experiment (http://www.thegreatbrainexperiment.com;
available free for iOS and Android operating systems). The app
features 8 cognitive science tasks (including “What makes me
happy?”) that replicate known laboratory findings.23,25,26,31

Participants completed 30 choice trials and 12 ratings. Risky
options were represented by spinners with equal probabilities
for 2 potential outcomes, and chosen gambles were resolved
immediately (eFigure 2B in the Supplement). Participants
started with an endowment of 500 points and tried to earn as
many points as possible.

fMRI Imaging
We recorded BOLD responses during the probabilistic reward
task using a 3T MRI scanner (3T Magnetom Trio; Siemens
Healthcare) and a 32-channel head coil. Whole-brain

T2*-weighted echo-planar imaging data were acquired using
a sequence designed to minimize dropout in the striatum,
frontal cortex, and amygdala.32 Physiological monitoring in-
cluded measurements of pulse and breathing. Preprocessing
and analysis of the echo-planar imaging data were performed
using statistical parametric mapping (SPM8; Wellcome Trust
Centre for Neuroimaging) following standard procedures
(eMethods in the Supplement).

Computational Modeling of Momentary Mood
We fitted an established computational model23,24 in which cer-
tain rewards (CRs) are chosen instead of a gamble, expected val-
ues (EVs) are the average return of chosen gambles, and RPEs re-
sultingfromthoseexpectationsallexert influencesonhappiness:

Happiness(t) = w0 + w1

t

j=1

t

j=1t

j=1

γ t− j CRj + w2 γ t− j EVj 

γ t− j RPEj+ w3

where t and j are trial numbers, w0 is a baseline mood parameter,
other weights (w) capture influences of different event types, and
0≤γ≤1 is a forgetting factor that makes more recent events more
influential than events in earlier trials with an exponential de-
cay. Terms for unchosen options were set to zero, and the RPE
wassettozerowhentheoutcomewasnotrevealed.Weusedhap-
piness as a proxy for what we refer to as momentary mood and
related these momentary assessments to clinical measures that
capture mood on longer time scales. We used a Bayesian model
comparison to validate the model, testing alternate models that
omit expectations or split RPE terms into their separate compo-
nents (eMethods in the Supplement).

Statistical Analysis
Nonparametric statistical tests that do not assume data are
normally distributed were used. These included Wilcoxon
signed rank and rank sum tests and Spearman correlation co-
efficients (ρ). Statistical tests were always performed on con-
tinuous variables when available. Performing statistical tests
on dichotomized continuous data can lead to artifactual
findings.33 We also computed correlations after regressing out
sex, educational level (having a university degree), and age.
All P values are 2-tailed. Significance was set at P < .05.

Table. Differences Between MDD and Control Groups

Characteristic
MDD Behavior
(n = 54)

MDD fMRI Only
(n = 32)

Control
(n = 20)

Statistical
Testa P Value

Women, No. (%) 34 (63) 20 (63) 10 (50) Fisher exact .40

Age, mean (SD), y 34.3 (11.1) 34.1 (9.7) 34.0 (8.3) t50 = 0.02 .98

Educational level, mean (SD), y 16.3 (2.2) 16.3 (2.4) 16.4 (1.9) t50 = −0.31 .76

HAM-D score, mean (SD) 15.6 (4.1) 16.6 (2.5) 0.6 (1.0) t50 = 27.4 <.001

PHQ score, mean (SD) 15.8 (4.7) 16.9 (3.6) 1.1 (1.7) t50 = 18.3 <.001

Medication, No. (%)b 33 (61) 23 (72) 0 Fisher exact <.001

Abbreviations: fMRI, functional magenetic resonance imaging;
HAM-D, Hamilton Scale for Depression; MDD, major depressive disorder;
PHQ, Patient Health Questionnaire.
a Statistical tests compared depressed fMRI and healthy control samples.
b Antidepressant medications included bupropion hydrochloride (1 participant),

citalopram hydrobromide (10), fluoxetine hydrochloride (8), mirtazapine (3),
nortriptyline hydrochloride (1), quetiapine fumarate (1), sertraline
hydrochloride (8), and venlafaxine (2). Only 1 participant with MDD was taking
more than 1 antidepressant (mirtazapine and quetiapine).
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symptom severity (BDI-II, ρ = −0.30, P < 1 × 10−39) (Figure 3D).
This association was present in individuals who had never re-
ceived antidepressant medications (ρ = −0.30, P < 1 × 10−26)
and after regressing out age, educational level, and sex ef-
fects (ρ = −0.29, P < 1 × 10−37). Anhedonia (BDI-II anhedonia
subscale) did not correlate with the emotional impact of RPEs
(ρ = 0.04, P = .13), but the correlation for the remaining BDI-II
questions remained significant (ρ = 0.06, P = .01). Anhedo-
nia was significantly correlated with baseline mood para-
meters (ρ = −0.25, P < 1 × 10−26) to a similar degree as the
remaining BDI-II questions (ρ = −0.30, P < 1 × 10−39).

Discussion
In this study, we provide evidence inconsistent with predic-
tions derived from previous depression studies.7,8,15,16 Using
a combination of fMRI, computational modeling, and smart-
phone-based data collection, we found no evidence for im-
pairment in basic reward-related neural and emotional pro-
cesses in depression in a nonlearning context. Our results
suggest that the dopaminergic RPE signal is not fundamen-
tally affected by depression. Prior observations might be best
interpreted as reflecting changes in the dopaminergic effect
on downstream targets, rather than a core deficit in the com-
putation or expression of a dopaminergic RPE signal itself.

Ventral striatal BOLD activity reflects RPE signals both in
reinforcement learning tasks8,21 and in gambling tasks with-
out a significant learning requirement,19,30,36 where dopa-

mine levels are known to represent RPEs.13 Because individu-
als with depression have tended to show performance deficits
in complex tasks, it is important to also use paradigms where
performance of depressed persons is carefully matched with
that of controls. Our paradigm allowed us to evaluate de-
pressed participants in a nonlearning task with the same level
of performance (97%) as controls. The RPE signals in ventral
striatum were, if anything, larger in depressed than control par-
ticipants, and our sample size was larger than in previous stud-
ies reporting attenuated striatal signals in reinforcement learn-
ing tasks.8,15,16 Behavioral data from laboratory (n = 74) and
smartphone (n = 1833) samples confirmed that depressive
symptoms were not associated with a reduction in the emo-
tional impact of RPEs.

Antidepressant drugs have a wide range of molecular tar-
gets, including receptors for neurotransmitters, such as sero-
tonin, dopamine, norepinephrine, and glutamate. Different
antidepressant drugs act at different time scales, with gluta-
matergic antidepressants (eg, ketamine) having more rapid ef-
fects than drugs that primarily target, for example, serotonin-
ergic neurotransmission (eg, citalopram). The slow time
constant of the latter might reflect an accumulation in the im-
pact of altered emotional processing.37 Antidepressant drugs
that affect dopamine transmission may have a different mecha-
nism of action. Our results suggest that, in a nonlearning con-
text, RPEs retain their effect on ventral striatal activity, sug-
gesting that computation of dopaminergic RPEs is not affected
by moderate depression. This leaves open the possibility that
an antidepressant efficacy of dopaminergic drugs might de-

Figure 2. Main Effects of Reward-Related Neural Responses
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A, Depressed participants (n = 32) showed intact expected value (EV) signals in
ventral striatum and intact reward prediction error (RPE) signals in ventral
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P < .001. B, EV and RPE signals in the ventral striatum region of interest were
not significantly different in the depressed (n = 32) and control groups (n = 20).
Scale indicates t statistics; Error bars, SEM; AU, arbitrary units.
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rive from effects on downstream targets that modulate belief
updating and associated adaptive behavior.

The finding of intact dopaminergic RPEs in depression is
inconsistent with influential proposals,4,5,15,16 based partly on
anomalous BOLD activity in the striatum. Striatal activity is
likely to be modulated by many factors in addition to dopa-
minergic inputs. Our results support a hypothesis advanced
in a recent theoretical analysis of the depression literature,38

where the authors proposed that depression is primarily a dis-
order of goal-directed decision making that relies on model-
based reasoning. This type of reasoning depends on an evalu-
ation of the environment based on a model of the causal
structure of the world and may not rely substantially on do-
paminergic RPEs. Dopamine’s central role in animal depres-
sion models4,39 arises out of observations that dopamine ma-
nipulations lead to depression-like behaviors, but this finding
does not necessarily indicate that dopamine plays a central role
in MDD. Indeed, results from human studies are equivocal, and
reports of attenuated ventral striatal signals in reinforcement
learning tasks8,15,16 may reflect impaired model-based valua-
tion related to a mistaken understanding of the environment
rather than a fundamental failure of the dopaminergic com-

putation of RPEs. Our results support this theoretical analy-
sis since, using a simple task that should strongly drive dopa-
minergic RPEs and that minimizes the likelihood of a mistaken
understanding of the environment, we found no evidence for
attenuated RPE signals in ventral striatum.

Limitations
A limitation of the present study is that the majority of par-
ticipants with depression were receiving antidepressant drugs.
It is possible that these drugs affected neural or emotional re-
sponses to RPEs. However, we saw no difference in neural sig-
nals in medicated and medication-free depressed partici-
pants, although the medication-free group was small (n = 9).
We also saw no differences in the smartphone data in indi-
viduals who had never received antidepressant medications.
When we examined whether anhedonia explained changes in
mood parameters, we found no evidence that this symptom
related more closely to mood effects than other symptoms. We
also found no association between anhedonia and ventral stria-
tal RPE signals. We found no indication that moderate depres-
sion reduced RPE signals in ventral striatum and that mild-to-
severe depressive symptoms are associated with a reduced

Figure 3. Computational Model of Momentary Mood in Laboratory and Smartphone Experiments
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laboratory and made a choice on every trial between safe and risky options;
they then were shown the gamble expected values (EVs). After every 2 to 3
trials, participants were asked, “How happy are you at this moment?” Parameter
weights for past certain rewards (CRs), gamble EVs, and reward prediction
errors (RPEs) in the momentary mood computational model were significantly
positive in both the depressed and control groups. B, Baseline mood
parameters were negatively correlated with symptom severity (Patient Health
Questionnaire [PHQ], ρ = −0.54, P < 1 × 10−6; Hamilton Scale for Depression

[HAM-D], ρ = −0.50, P < 1 × 10−5). C, Participants (n = 1833) played a similar
risky decision task on their smartphones and also completed the Beck
Depression Inventory second edition (BDI-II) questionnaire. Parameter weights
were not reduced for participants with high (!15) compared with low (<15)
BDI-II scores. The impact of RPEs was not reduced in depression and was
greater in participants with worse symptom severity (ρ = 0.05, P = .01).
D, Baseline mood parameters were negatively correlated with symptom
severity (BDI-II, ρ = −0.30, P < 1 × 10−39). Error bars indicate SEM.
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rive from effects on downstream targets that modulate belief
updating and associated adaptive behavior.

The finding of intact dopaminergic RPEs in depression is
inconsistent with influential proposals,4,5,15,16 based partly on
anomalous BOLD activity in the striatum. Striatal activity is
likely to be modulated by many factors in addition to dopa-
minergic inputs. Our results support a hypothesis advanced
in a recent theoretical analysis of the depression literature,38

where the authors proposed that depression is primarily a dis-
order of goal-directed decision making that relies on model-
based reasoning. This type of reasoning depends on an evalu-
ation of the environment based on a model of the causal
structure of the world and may not rely substantially on do-
paminergic RPEs. Dopamine’s central role in animal depres-
sion models4,39 arises out of observations that dopamine ma-
nipulations lead to depression-like behaviors, but this finding
does not necessarily indicate that dopamine plays a central role
in MDD. Indeed, results from human studies are equivocal, and
reports of attenuated ventral striatal signals in reinforcement
learning tasks8,15,16 may reflect impaired model-based valua-
tion related to a mistaken understanding of the environment
rather than a fundamental failure of the dopaminergic com-

putation of RPEs. Our results support this theoretical analy-
sis since, using a simple task that should strongly drive dopa-
minergic RPEs and that minimizes the likelihood of a mistaken
understanding of the environment, we found no evidence for
attenuated RPE signals in ventral striatum.

Limitations
A limitation of the present study is that the majority of par-
ticipants with depression were receiving antidepressant drugs.
It is possible that these drugs affected neural or emotional re-
sponses to RPEs. However, we saw no difference in neural sig-
nals in medicated and medication-free depressed partici-
pants, although the medication-free group was small (n = 9).
We also saw no differences in the smartphone data in indi-
viduals who had never received antidepressant medications.
When we examined whether anhedonia explained changes in
mood parameters, we found no evidence that this symptom
related more closely to mood effects than other symptoms. We
also found no association between anhedonia and ventral stria-
tal RPE signals. We found no indication that moderate depres-
sion reduced RPE signals in ventral striatum and that mild-to-
severe depressive symptoms are associated with a reduced

Figure 3. Computational Model of Momentary Mood in Laboratory and Smartphone Experiments
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laboratory and made a choice on every trial between safe and risky options;
they then were shown the gamble expected values (EVs). After every 2 to 3
trials, participants were asked, “How happy are you at this moment?” Parameter
weights for past certain rewards (CRs), gamble EVs, and reward prediction
errors (RPEs) in the momentary mood computational model were significantly
positive in both the depressed and control groups. B, Baseline mood
parameters were negatively correlated with symptom severity (Patient Health
Questionnaire [PHQ], ρ = −0.54, P < 1 × 10−6; Hamilton Scale for Depression

[HAM-D], ρ = −0.50, P < 1 × 10−5). C, Participants (n = 1833) played a similar
risky decision task on their smartphones and also completed the Beck
Depression Inventory second edition (BDI-II) questionnaire. Parameter weights
were not reduced for participants with high (!15) compared with low (<15)
BDI-II scores. The impact of RPEs was not reduced in depression and was
greater in participants with worse symptom severity (ρ = 0.05, P = .01).
D, Baseline mood parameters were negatively correlated with symptom
severity (BDI-II, ρ = −0.30, P < 1 × 10−39). Error bars indicate SEM.
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symptom severity (BDI-II, ρ = −0.30, P < 1 × 10−39) (Figure 3D).
This association was present in individuals who had never re-
ceived antidepressant medications (ρ = −0.30, P < 1 × 10−26)
and after regressing out age, educational level, and sex ef-
fects (ρ = −0.29, P < 1 × 10−37). Anhedonia (BDI-II anhedonia
subscale) did not correlate with the emotional impact of RPEs
(ρ = 0.04, P = .13), but the correlation for the remaining BDI-II
questions remained significant (ρ = 0.06, P = .01). Anhedo-
nia was significantly correlated with baseline mood para-
meters (ρ = −0.25, P < 1 × 10−26) to a similar degree as the
remaining BDI-II questions (ρ = −0.30, P < 1 × 10−39).

Discussion
In this study, we provide evidence inconsistent with predic-
tions derived from previous depression studies.7,8,15,16 Using
a combination of fMRI, computational modeling, and smart-
phone-based data collection, we found no evidence for im-
pairment in basic reward-related neural and emotional pro-
cesses in depression in a nonlearning context. Our results
suggest that the dopaminergic RPE signal is not fundamen-
tally affected by depression. Prior observations might be best
interpreted as reflecting changes in the dopaminergic effect
on downstream targets, rather than a core deficit in the com-
putation or expression of a dopaminergic RPE signal itself.

Ventral striatal BOLD activity reflects RPE signals both in
reinforcement learning tasks8,21 and in gambling tasks with-
out a significant learning requirement,19,30,36 where dopa-

mine levels are known to represent RPEs.13 Because individu-
als with depression have tended to show performance deficits
in complex tasks, it is important to also use paradigms where
performance of depressed persons is carefully matched with
that of controls. Our paradigm allowed us to evaluate de-
pressed participants in a nonlearning task with the same level
of performance (97%) as controls. The RPE signals in ventral
striatum were, if anything, larger in depressed than control par-
ticipants, and our sample size was larger than in previous stud-
ies reporting attenuated striatal signals in reinforcement learn-
ing tasks.8,15,16 Behavioral data from laboratory (n = 74) and
smartphone (n = 1833) samples confirmed that depressive
symptoms were not associated with a reduction in the emo-
tional impact of RPEs.

Antidepressant drugs have a wide range of molecular tar-
gets, including receptors for neurotransmitters, such as sero-
tonin, dopamine, norepinephrine, and glutamate. Different
antidepressant drugs act at different time scales, with gluta-
matergic antidepressants (eg, ketamine) having more rapid ef-
fects than drugs that primarily target, for example, serotonin-
ergic neurotransmission (eg, citalopram). The slow time
constant of the latter might reflect an accumulation in the im-
pact of altered emotional processing.37 Antidepressant drugs
that affect dopamine transmission may have a different mecha-
nism of action. Our results suggest that, in a nonlearning con-
text, RPEs retain their effect on ventral striatal activity, sug-
gesting that computation of dopaminergic RPEs is not affected
by moderate depression. This leaves open the possibility that
an antidepressant efficacy of dopaminergic drugs might de-

Figure 2. Main Effects of Reward-Related Neural Responses
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A, Depressed participants (n = 32) showed intact expected value (EV) signals in
ventral striatum and intact reward prediction error (RPE) signals in ventral
striatum and medial prefrontal cortex. Images are displayed at uncorrected

P < .001. B, EV and RPE signals in the ventral striatum region of interest were
not significantly different in the depressed (n = 32) and control groups (n = 20).
Scale indicates t statistics; Error bars, SEM; AU, arbitrary units.
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‣ No impairment in learning 
‣ No impairment in computing prediction errors 
‣ Anhedonia related to sensitivity to complex 

stimuli (here monetary)

Anhedonia

Bylsma et al., 2008

3. Results

3.1. Omnibus analyses

We first conducted omnibus analyses of positive and negative emotional reactivity using the fixed effects model.
The analysis of positive emotional reactivity (PER) was significant (pb .0001) and revealed that PER was reduced in
MDD compared to normal controls (see Fig. 1). The effect size for PER was d=− .53, a medium-sized effect by
Cohen's (1988) conventions. Similarly, the omnibus analysis of negative emotional reactivity (NER) was also
significant, (pb .0001) and revealed that NER was reduced in MDD compared to normal controls (see Fig. 1). The
effect size for NER was d=− .25, corresponding to a small effect size. When PER and NER effect sizes were compared
in a moderator analysis (with effect type PER versus NER coded as a moderator variable), a significant effect was
obtained (Q=7.21, pb .01), reflecting that the PER effect was significantly larger than the NER effect, indicating that
MDD individuals exhibited a more pronounced blunting of PER than of NER.

Fig. 1. PER and NER across all domains. The MDD group exhibits reduced PER and NER compared to controls (pb .0001). Error bars represent 95%
confidence intervals.

684 L.M. Bylsma et al. / Clinical Psychology Review 28 (2008) 676–691
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Example code

‣ www.cmod4mh.org/emfit.zip 

‣ batchRunEMfit(‘mProbabilisticReward’) 
• will generate example data 
• fit all models in modelList.m 
• perform model comparison 
• generate surrogate data 
• generate plots for basic sanity checks 

‣ basic model is llbeq0.m

http://www.cmod4mh.org/emfit.zip
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Dopamine, learning & addiction

Learning Addiction

Dopamine

Is dopamine’s role in addiction  
mediated by its role in learning?
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Addictive Pavlovian values

Flagel et al., 2011 Nature, Huys et al., 2014 Prog. Neurobiol.
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Dopamine

Flagel et al., 2011 Nature

dopamine release in the nucleus accumbens (see Fig. 3), differ in
whether they are prone to learn a sign-tracking or goal-tracking CR,
but they still develop patterns of dopamine release specific to that CR.
Therefore, it appears that different mechanisms control basal dopa-
mine neurotransmission versus the unique pattern of dopamine
responsiveness to a reward cue.

The neural mechanisms underlying sign- and goal-tracking beha-
viour remain to be elucidated. Here we have shown that stimulus–
reward associations that produce different CRs are mediated by
different neural circuitry. Previous research using site-specific dopa-
mine antagonism21 and dopamine-specific lesions22 indicated that
dopamine acts in the nucleus accumbens core to support the learning
and performance of sign-tracking behaviour. This work demonstrates
that dopamine-encoded prediction-error signals are indeed present in
the nucleus accumbens of sign-trackers, but not in the nucleus accum-
bens of goal-trackers. Although these neurochemical data alone do not
rule out the possibility that prediction-error signals are present in other
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Figure 3 | Conditional responses and phasic dopamine signalling in
response to CS and US presentation in outbred rats. Phasic dopamine release
was recorded in the core of the nucleus accumbens using FSCV across six days
of training. a, b, Behaviour directed towards the lever-CS (sign-tracking)
(a) and behaviour directed towards the food-tray (goal-tracking) (b) during
conditioning. Learning was evident in both groups because there was a
significant effect of session both for rats that learned a sign-tracking response
(n 5 6; session effect on lever contacts: F(5,25) 5 11.85, P 5 0.0001) and for rats
that learned a goal-tracking response (n 5 5; session effect on food-receptacle
contacts: F(5,20) 5 3.09, P 5 0.03). c, e, Change in dopamine concentration
(mean 1 s.e.m.) in response to CS and US presentation for each session of
conditioning. d, f, Change in peak amplitude (mean 1 s.e.m.) of the dopamine
signal observed in response to CS and US presentation for each session of
conditioning. (Bonferroni post-hoc comparison between CS- and US-evoked
dopamine release: *P , 0.05; **P , 0.01). Panels c and d demonstrate that
animals developing a sign-tracking CR (n 5 6) show increasing phasic
dopamine responses to CS presentation and decreasing responses to US
presentation consistent with bHR rats. Panels e–f demonstrate that animals
developing a goal-tracking CR (n 5 5) maintain phasic responses to US
presentation consistent with bLR rats.
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Figure 4 | Dopamine is necessary for learning CS–US associations that lead
to sign-tracking, but not goal-tracking. a–c, The effects of flupenthixol on
sign-tracking. a, Probability of approaching the lever-CS. b, Number of
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determine whether flupenthixol influenced performance or learning of a CR,
behaviour was examined following a saline injection on session 8 for all rats.
bLR rats that were treated with flupenthixol before sessions 1–7 (n 5 16)
responded similarly to the bLR saline group (n 5 10) on all measures of goal-
tracking behaviour on session 8, whereas bHR rats treated with flupenthixol
(n 5 22) differed significantly from the bHR saline group (n 5 10) on session 8
(*P , 0.01, saline versus flupenthixol). Thus, bLR rats learned the CS–US
association that produced a goal-tracking CR even though the drug prevented
the expression of this behaviour during training. Parenthetically, bHR rats
treated with flupenthixol did not develop a goal-tracking CR.
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Pavlovian state values: sign tracking

Flagel et al., 2011 Nature
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Sign-tracking in humans?

Schad et al., in prep

n=129

Schad et al., 2017 Supplementary Information

Supplementary Figure 4 | Gaze index as a function of continuous CS value level.
Error bars are SEM.
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STs only show BOLD RPE

Schad et al., in prep
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RPEs in Pavlovian setting?

‣ No behaviour - cannot fit the usual models 

‣ Early results: fMRI relatively insensitive to learning 
rate used. 0.3 as ‘default’ 

‣ Here, assumed slower one as Pavlovian trace 
conditioning paradigm
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What should we expect?

Wilson and Niv 2017 PLoS CB

‣ Assume data generated as follows 

‣ and use wrong regressor 

‣ the resulting t/p values

seeking to localize a particular signal. The bad news, however, is that model-based fMRI is in-
sensitive to differences in parameters, which means that one should use extreme caution when
attempting to determine the computational role of a neural area (e.g., when asking whether a
brain area corresponds to an outcome signal or a prediction error signal). In the Discussion we
consider the extent to which this result generalizes to other parameters and other models and
offer suggestions to diagnose parameter sensitivity in other models.

Methods
Ethics statement
Both experiments were approved by their respective institutions. The experiment in [10] was
approved by the Institutional Review Board of the California Institute of Technology. The ex-
periment in [3] was approved by Ethics Committee at University College London. In both
cases participants gave informed consent in writing.

Theoretical analysis
We begin by laying out a formal analysis of the sensitivity of model-based fMRI to model pa-
rameters. The rationale behind the mathematical derivations below is as follows. Assume that
there is some signal in the brain (corresponding to some ‘ground truth’ regressor xg) that we
have a noisy measurement of (e.g., via fMRI). We first derive the somewhat intuitive result that
if we analyze the brain data with a different, incorrect regressor xf (where the subscript, f, de-
notes that the regressor is derived from our model with fit parameter values), the quality of our
results depends on the correlation between the ground truth regressor and the incorrect regres-
sor, ρ(xg, xf).

To assess the sensitivity of model-based fMRI to errors in parameter estimation, we then
focus on trial-and-error learning tasks. We assume a ground truth regressor derived from a re-
inforcement learning model with the learning rate parameter set to its true (though unknown)
value, and analyze the correlation between this regressor and one that is derived from the same
model but with a different setting of the learning rate, for some of the most commonly used
task designs. Finally, we illustrate and flesh out the implications of these analytical results using
both simulated and empirical data in the Results.

The effect of an incorrect regressor on fMRI analysis. Assume a ‘ground truth’ regressor
xg = (xg1, xg2, . . ., xgT) (where xgt is the size of the variable of interest at time point t) that under-
lies the activity in a brain region, such that the measured signal in this region takes the form

Y ¼ bxg þ !; ð1Þ

with β being a coefficient that controls the size of the effect and ! being zero-mean noise. What

would be the magnitude of the estimated regression coefficient b̂ if we analyzed the brain data
using an incorrect regressor, xf (for example one that is derived from an incorrect model, or
from the correct model with the wrong setting of the free parameters)? Using ordinary least
squares regression, we have

b̂ ¼ ðxT
f xf Þ

% 1xT
f Y

¼ ðxT
f xf Þ

% 1ðxT
f bxgÞ

¼ brðxg ;xf Þ
sðxgÞ
sðxf Þ

ð2Þ
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where sðxÞ ¼
ffiffiffiffiffiffi
xTx
T

q
is the standard deviation of regressor x, rðxg ;xf Þ ¼

xTg xf

Tsðxg Þsðxf Þ
is the corre-

lation coefficient between xg and xf, and T is the number of data points in the regression. Thus,

if we normalize the regressors to have unit variance, i.e. σ(xg) = σ(xf) = 1, then b̂ is related to
the ground truth regression coefficient through the correlation between the two regressors:

b̂ ¼ brðxg ;xf Þ ð3 Þ

Thus, the more correlated the fit regressor is to the true regressor, the larger the regression co-

efficient for the fit regressor, b̂. How does this affect the statistical significance of b̂, that is, the
results of a statistical analysis that asks whether b̂ is reliably different from zero? To answer

this question, we must compute t̂ , the Student t statistic of b̂ relative to the null hypothesis

b̂ ¼ 0. Making the further simplifying assumption that the fMRI noise, !, is Gaussian with var-
iance s2

fMRI , we have

t̂ ¼ b̂
sðb̂Þ

ð4 Þ

where sðb̂Þ is standard error of b̂. For simple regression, sðb̂Þ can be written in terms of the
standard deviation of the regression residuals, !̂, as

sðb̂Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
T $ 2

p sð!̂Þ
sðxf Þ

: ð5 Þ

To compute the standard deviation of the residuals we first note that, by definition,

!̂ ¼ Y $ b̂xf

¼ bxg þ ! $ brðxg ;xf Þxf :
ð6 Þ

Thus, because the residuals have zero mean

sð!̂Þ2 ¼ !̂T !̂

T

¼ 1

T
ðb2xT

g xg þ !T! þ b2rðxg ;xf Þ
2xT

f xf $ 2b2rðxg ;xf ÞxT
f xg þ 2bxT

g ! $ 2brðxg ;xf ÞxT
f !Þ

¼ s2
fMRI þ b2ð1 $ rðxg ;xf Þ

2Þ

ð7 Þ

where we have used the fact that xT
g ! & 0 and xT

f ! & 0 to cancel out the terms in the second

line, and the definition of the correlation coefficient to make the simplification in the third line.
Combining this expression with Eqs 4 and 5 and keeping in mind that σ(x) = 1 allows us to
write down the t statistic as

t̂ ¼ brðxg ;xf Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T $ 2

s2
fMRI þ b2ð1 $ rðxg ;xf Þ

2Þ

s

¼ rðxg ;xf ÞCNR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T $ 2

1 þ CNR2ð1 $ rðxg ;xf Þ
2Þ

s ð8 Þ

where CNR = β/σfMRI denotes the ‘contrast-to-noise’ ratio [15 ]—the ratio between the strength
of the fMRI signal, β, and the standard deviation of the fMRI noise, σfMRI. Note that this t statis-

tic, like the regression coefficient, b̂, is a function of the correlation between the ground truth
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For static reward probability

Wilson and Niv 2017 PLoS CB

fit learning rate, Vf. Likewise prediction error signals depend on ρ(δg, δf). Moreover, expres-
sions for these correlations rely only on a few statistics of the reward distribution: its mean μ(r)
=m, the mean of the squared rewards mðr2Þ ¼ m2 þ s2

n, and the reward autocorrelation RΔ(r)
=m2. Given these expressions for the reward statistics, we can compute the sums in Eqs 14 and
16 exactly (as sums of geometric series), leading to the following expressions for the value and
prediction error correlations using different learning rates αg and αf:

rðVg ;VfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agafð2 % agÞð2 % afÞ

q

ag þ af % agaf

rðdg ; dfÞ ¼
ðag þ afÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 % agÞð2 % afÞ

q

2ðag þ af % agafÞ

ð18 Þ

In Fig 2A and 2B we plot these correlations as functions of the two learning rates. Strikingly,
the correlations for both value and prediction error are relatively insensitive to mismatch in
learning rates. Indeed, for prediction errors, the minimum possible value of the correlation (at

αg ! 0 and αf! 1 or vice versa) is 1=
ffiffiffi
2

p
& 0:7. This implies that even in the worst case

Fig 2. Correlations and t statistics for experiments with a fixed reward distribution, computed by
evaluating Eq (18) at learning rates between 0.001 and 1, in steps of 0.001. (A) Correlation, ρ(Vg, Vf),
between regressors for value as a function of the true, αg, and fitted, αf, learning rates. (B) Correlation
between the regressors for prediction error, ρ(δg, δf). (C,D) Single-subject t statistics (assuming 49 degrees
of freedom) as a function of the two learning rates for value (C) and prediction error (D). Black, gray and white
contours denote significance at p = 0.01, p = 10−4 and p = 10−6, respectively. Dashed black line in C: values
that will be analyzed in more detail in Fig 3.

doi:10.1371/journal.pcbi.1004237.g002

Is Model Fitting Necessary for Model-Based fMRI?

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004237 June 18, 2015 9 / 21



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

There is little information
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Fig 5. Fit of a linear model comprised of a single model-based regressor generated with different
learning rates α, to fMRI data in the fixed reward probability experiment [10] as a function of learning
rate. Each grey curve corresponds to a different subject and in blue is the mean across subjects. All curves
are shifted to have a maximum value of 0. For most subjects the quality of the fit depends only weakly on the
learning rate. Note that the y-axis is the same as in Fig 10, to highlight the differences between the
sensitivities of the two experiments to the setting of the learning rate parameter.

doi:10.1371/journal.pcbi.1004237.g005

Fig 6. An example drifting reward distribution. (A) Evolution of the meanmt over time, t, diffusing with a
drift standard deviation σd. The decay, γ, is indicated by the gray arrows and the shaded region indicates the
standard deviation of the Gaussian noise distribution, σn. (B) A set of rewards sampled from the distribution in
panel A.

doi:10.1371/journal.pcbi.1004237.g006

Is Model Fitting Necessary for Model-Based fMRI?
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For drifting reward probability

Wilson and Niv 2017 PLoS CB

the fit learning rate, interpretation of what function a neural area fulfills can change significant-
ly as the fit parameter values change.

To further investigate the sensitivity of our results to settings of the learning rate, we again
computed the log likelihood of the neural data for linear regression models using model-based
regressors with different learning rates. These results are shown in Fig 10. Unlike the case of
constant reward probability (Fig 5), in this experiment we found much stronger dependence of
the log likelihood on learning rate, likely due to the increased contrast-to-noise ratio for the
larger vmPFC ROI (11 here, compared to 0.4 for the NAc ROI). This increased sensitivity also
allows us to extract a potentially meaningful fit of the learning rate to the fMRI data—on aver-
age 0.36 (± 0.08 [s.e.m.]). Of course, this analysis is only suggestive and one should be carefully
interpreting group-averaged statistics.

Fig 7. Correlations betweenmodel based regressors derived using different learning rates, in an experiment with drifting rewards, for three
different settings of the decay of the rewardmean to 0, γ, and the drift-to-noise ratio of the reward mean, σd/σn. Plots were generated by evaluating
Eq (24) for learning rates between 0.001 and 1 in steps of 0.001. (A,B) When γ is high (0.98) and σd/σn is low (0.7), values are not sensitive to fit learning rate,
but prediction errors are sensitive. (C,D) Intermediate γ and σd/σn lead to intermediate sensitivity of both value and prediction error to learning rate. (E, F)
When γ is low (0.1) and σd/σn is high (4.5), the results mimic those obtained with a fixed reward distribution (values are more sensitive to fit learning rate than
are prediction errors, compare Fig 2A and 2B).

doi:10.1371/journal.pcbi.1004237.g007

Is Model Fitting Necessary for Model-Based fMRI?
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There is some information
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To decide between different accounts of vmPFC activity—value, prediction error, or both—
one could use a similar method to compare the goodness of fit of different models and assess,
at the group level, which model fits the data best. In particular, one could compare three dis-
tinct linear models: one with a regressor for value but not prediction error, one with a regressor
for prediction error but not value and one with both (for instance, generated using the best-fit
learning rate). The log-likelihood measure (corrected for the different number of parameters,
in this case, the number of regressors) could then be compared to determine the best model.
We note that while suchmodel comparison is closely related to the questions of parameter fit-
ting and parameter estimation we consider here, it comes with none of the guarantees that we
have established for parameter fitting.

Discussion
In this paper, we considered the extent to which errors in the estimation of model parameters
impact model-based fMRI. We showed that, in general, the answer to this question depends
crucially on the correlation between regressors derived from different parameterizations of the
model, ρ(xg, xf), and is further affected by the contrast-to-noise ratio in the data, CNR, and the
number of trials, T, in the experiment. In the specific case where the fit parameter is the learn-
ing rate in a reinforcement learning model, we found that regressors for both value and predic-
tion error signals were fairly insensitive to the fit learning rate, such that for realistic values of
CNR and T, the results of the model-based analysis were predicted to be robust to different pa-
rameterizations. Indeed for an experiment with a fixed reward distribution, the estimated
learning rate had close to no effect on the detection of prediction error signals in the NAc either
in theory or in the experimental data. Similar results also held when rewards were drawn from
a Gaussian distribution with a randomly drifting mean.

These findings are consistent with the report from one of the earliest model-based fMRI pa-
pers [18], in which changing the learning rate from 0.2 to 0.7 was found to have relatively little
effect on the results. However, when either the contrast-to-noise ratio or number of trials is
high, sensitivity of the model-based analysis to learning rate can increase. This might explain

Fig 10. Fit of a linear model comprised of a single model-based regressor generated with different
learning rates α, to fMRI data in the drifting reward experiment [3] as a function of learning rate. Each
grey curve corresponds to a different subject and in blue is the mean across subjects. All curves are shifted to
have a maximum value of 0. The y-axis is the same as that for Fig 5, to highlight the differences between the
two experiments.

doi:10.1371/journal.pcbi.1004237.g010
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Schad et al., 2017 Supplementary Information

Supplementary Figure 8 | PE response in sign-trackers (ST) versus goal-
trackers (GT). a. Contrast showing stronger PE signal in ST than in GT. Thresh-
olds: p < .005, k = 0 (red) and p < .001, k = 0 (blue). b. Same contrast when
also including aversive trials: the effect is weaker, but still reliable in the NAc. c.
Distributions of the NAc PE error (voxel of peak group difference) in ST (right)
and GT (left) with perfect Pavlovian learning (100% correct forced choices) ver-
sus near-perfect Pavlovian learning (90-97% correct forced choices). d. Average
PE signal (1st principle component) in the NAc in ST and GT for different learning
rates. Grey marks (located at data points) show results from one-sample t-tests (for
p-values see legend) of whether the PE signal is greater than zero (one-tailed). Red
marks (located between data points) show results from two-sample Welch’s t-tests
of whether the PE signal is stronger in ST than in GT (one-tailed). c. Distributions
of PE-like response in other volumes of interest. 27
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Pupil size accommodates in STs only

Schad et al., in prep

Schad et al., 2017 Supplementary Information

Supplementary Figure 6 | Comparing observed pupil size in sign- and goal-
trackers with predictions from an RL PE model. Pupil data are from the last
second before US presentation. a. Observed effect of CS value on pupil size (re-
gression coefficients; points) and predicted CS value effect in the RL model (lines)
per trial. Observed CS value effects are estimated using a linear mixed-effects
model per trial. b. Average observed (points) and predicted (PE model, lines)
pupil size for each CS across trials. Error bars are SEM.

25
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PIT in alcohol use disorder

Garbusow et al., 2016 Addiction

Figure3
Click here to download high resolution image

Figure4
Click here to download high resolution image
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PIT in at-risk young males

Garbusow et al., 2017 under rev.

PIT	in	young	social	alcohol	drinkers	 Garbusow	et	al.	
	

18	
	

performance	did	not	differ	significantly	between	the	groups	(p	=	.55).	For	PIT	effect	of	

the	whole	group	see	supplementary	figure	S1.		

The	individual	strength	of	the	PIT	effect	was	positively	associated	with	trait	impulsivity	

as	measured	by	the	SURPS	impulsivity	subscale	(ρ	=	0.23,	p	=	.0014,	n	=	189,	Bonferroni	

correctable	for	multiple	testing	[four	SURPS	subscales	and	four	further	scales,	threshold	

for	p	=	.006).	The	other	three	SURPS	subscales	and	four	variables	that	were	increased	in	

high-risk	drinkers	(severity	of	alcohol	dependence,	smoking	status,	craving	and	lifetime	

alcohol	intake)	were	not	significantly	associated	with	the	strength	of	the	PIT	effect.		

	

Figure	3.	PIT	effect	in	low-	versus	high	risk	drinkers.	A:	Number	of	button	presses	for	each	
Pavlovian	background	condition.	The	PIT	effect	is	stronger	in	high-risk	drinkers	(as	indicated	by	a	
steeper	group	regression	slope).	B:	Stronger	individual	PIT	effects	(individual	regression	slopes)	in	
high-	versus	low-risk	drinkers.	C:	Positive	correlation	between	impulsivity	(measured	with	the	
SURPS)	and	the	individual	PIT	slope,	which	was	significant	in	both	groups	(ρ	=	.22-	.23,	ps<.05).	
Error	bars	reflect	standard	errors	of	the	mean.	

	

Imaging	results	

The	ROI	analysis	(encompassing	bilateral	amygdalae	and	NAcc)	for	the	whole	sample	

revealed	a	significant	PIT-related	activation	only	in	the	right	amygdala	(t(137)	=	3.25,	

pSVC	=	.04,	x	=	26,	y	=	-6,	z	=	-12,	see	figure	4	A),	which	could	not	be	explained	by	a	pure	

PIT	in	young	social	alcohol	drinkers	 Garbusow	et	al.	
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CS	effect	(see	supplementary	figure	S2).	Extraction	of	the	mean	β-values	within	this	

region	for	illustrative	purpose	shows	a	positive	correlation	with	the	behavioral	PIT	

effect	(ρ	=	0.18,	p	=	.034,	n	=	139).	This	correlation	was	driven	by	the	high-risk	(ρ	=	0.25,	

p	=	.035,	n	=	70)	but	not	the	low-risk	drinking	group	(p	>	.05,	n	=	69,	see	figure	4B).		

There	were	no	significant	activations	even	when	testing	on	a	voxel	wise	level	in	the	

NAcc.	For	exploratory	whole	brain	analyses	at	p	<	.001	and	k	=	10	see	supplementary	

table	S5.	

	

Figure	4.	A:	Neural	PIT	effect	in	the	right	amygdala	for	the	whole	group	(n=139).	For	illustrational	
purposes	this	effect	was	masked	for	the	bilateral	amygdala	(ROI	derived	from	WFU-Pick	atlas).	B:	
The	PIT-related	activation	in	the	right	amygdala	positively	correlated	with	the	behavioral	PIT	
effect	(individual	regression	slope),	that	was	significant	for	high-	but	not	for	low	risk	drinkers.	
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The point

‣ A model “processes” information 
‣ Cannot increase it 
‣ If it’s not there, the model won’t put it there
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Obsessive-compulsive disorder

‣ Overwhelming urge to think certain thoughts or 
perform certain actions 

‣ A “habit” driving urges to think and to act?

Special Issue: Cognition in Neuropsychiatric Disorders

Neurocognitive endophenotypes of
impulsivity and compulsivity: towards
dimensional psychiatry
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Karen D. Ersche1,3
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A key criticism of the main diagnostic tool in psychiatry,
the Diagnostic and Statistical Manual of Mental Health
Disorders (DSM-IV), is that it lacks a biological footing. In
this article, we argue for a biological approach to psy-
chiatry based on ‘neurocognitive endophenotypes’,
whereby changes in behavioural or cognitive processes
are associated with discrete deficits in defined neural
systems. We focus on the constructs of impulsivity and
compulsivity as key examples of the approach and dis-
cuss their possible cross-diagnostic significance, apply-
ing them to co-morbidities and commonalities across a
range of disorders (attention-deficit/hyperactivity disor-
der, substance dependence, obsessive-compulsive dis-
order and eating disorders). We argue that this approach
has important implications for the future classification of
psychiatric disorders, genetics and therapeutics.

The case for biological psychiatry
Psychiatry is at a cross-roads, not only because of the
continuing stigma of mental health disorders, which frus-
trates practitioners and patients alike, but also because of
the way in which patients are diagnosed and treated [1].
Diagnosis, (for example, according to the Diagnostic and
Statistical Manual of Mental Health Disorders (DSM-IV))
has always been challenging due to the sheer complexity
and heterogeneity of the symptoms that may occur in a
particular disorder, the potentially confusing array of co-
morbidities with other psychiatric disorders occurring in
presenting patients, and the logical problem that there
may exist neither necessary nor sufficient conditions for
defining a particular category of disorder [2]. Thus, a
patient can have the same diagnosis based on symptoms
that are even opposite in nature (e.g., agitation and psy-
chomotor retardation in depression). Moreover, some
symptoms may be present in different diagnoses (e.g.,
apathy or delusions in both depression and schizophrenia).

Historically psychiatry had considerable success in a
‘golden age’ of psychopharmacology, with the sometimes

serendipitous discovery of new drug treatments, such as
the anti-psychotics (e.g., chlorpromazine and haloperidol,
as well as lithium), anti-depressants (e.g., desipramine and
fluoxetine) and anti-anxiety agents (e.g., the benzodiaze-
pines). However, some of these advances have palled in
recent years with the realisation of limited efficacy, major
side-effects and a lack of novel mechanisms or compounds,
few withstanding the crucial test of large phase-3 clinical
trials [1,3]. The latter failures may reflect regulatory
trends, but also perhaps the use of relatively poor means
of neurocognitive and behavioural assessments, and the
recruitment of patients with common DSM diagnoses, but
widely disparate symptoms.

A common critique of DSM-IV is that, although it is a
useful research instrument and invaluable clinical aid, its
criteria appear based more upon the description of super-
ficial behavioural signs and verbal reports of patients and
associates than a firm biological footing [2]. Some of these
concerns could conceivably have been allayed by revision of
the DSM schemes. Moreover, in a process that has taken
over a decade, the new version of the Manual, DSM-V,
(http://www.dsm5.org) is set to be published in May 2013.
Although there will be some undoubted improvements,
including assessment of symptom severity and the incor-
poration of some biological criteria into the new edition, the
progression to defining organic, as distinct from functional,
syndromes has not been as rapid as would perhaps have
been hoped, given the advances made in neurobiology,
including cognitive neuroscience, and genetics.

This article addresses this difficulty by considering the
utility of ‘neurocognitive endophenotypes’, such as impul-
sivity and compulsivity, derived frommeasures of brain as
well as behavior, and using them ‘transdiagnostically’
across disorders, such as substance abuse, obsessive-com-
pulsive disorder (OCD) and attention deficit /hyperactivity
disorder (ADHD) to discern possible commonalities that
may highlight new genetic or therapeutic avenues. Of
course, it will also be important to determine what is
different across such disorders, although these differences
may not always be at the core of the disorder. However, by

Review
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Model-free vs model-based valuation

Niv et al., 2008 TICS

different locations (Figure 1a). Given the different utilities
for the outcomes, how can the rats decide whether to turn
left or right at the first choice point and how fast to run?

There is extensive evidence [1] that mice, rats and
primates solve this problem using two neurally distinct
[8] action selection schemes (in computational terms, two
different controllers), which use different strategies [9,10].
The first, goal-directed action selection, driven by
‘response–outcome’ associations [1,11], is sensitive to the
contingencies between actions and their outcomes, and to
the utilities of these outcomes. The second, habitual action
selection, is driven by ‘stimulus–response’ links [9], or, in
computational terminology, stimulus–action values (or
advantages) [12,13], and specifies actions without regard
to their consequential outcomes. Box 1 discusses these two
controllers in more detail, along with key findings about
their inter-relationship and neural underpinnings. Below,
we discuss how each action selection scheme can be influ-
enced by motivation. We show that the division between
outcome-specific ‘directing’ and general ‘energizing’ effects
of motivation fits computationally and psychologically
with the division between goal-directed and habitual
controllers.

Goal-directed behavior: a ‘brute force’ solution
Almost by definition, the goal-directed system uses what is
called a ‘forward model’, working out the ultimate

outcomes consequent on a sequence of actions by searching
through the tree of state-actions-consequences, and choos-
ing actions based on the outcomes’ current utilities
(Figure 1b) [10]. Specific satiety and conditioned taste-
aversion procedures (Box 2) have shown that action choice
in this system is sensitive to manipulations that alter
outcome utilities [14–21]. Further, studies introducing
motivational shifts have shown that these too affect
goal-directed behavior through the determination of out-
come utilities. This is demonstrated by the fact that after a
motivational shift, the new utilities must be experienced
(in what is called an ‘incentive learning’ stage), for the
effects of the motivational shift to be manifest [1,11,15,22–
26].

Goal-directed control is therefore motivationally
straightforward, with outcome utilities directing actions
to the most valued outcomes appropriately. However, this
form of search in a forwardmodel constitutes a ‘brute-force’
solution to the action selection problem, involving high
costs of computation and working memory, and is often
intractable [10].

Is habitual behavior doomed to be motivation-
insensitive?
Normative computational models of habitual action selec-
tion view it as arising from stored (cached) values of
different actions in different states (Figure 1c). Each value

376 Opinion TRENDS in Cognitive Sciences Vol.10 No.8

Figure 1. Two strategies to solve the sequential action selection problem.(a) A hypothetical problem: a rat navigates a maze with different outcomes at different end points.
The rat starts at state S1 and must choose either left (L) or right (R). It must choose again at either S2 or S3, to turn L or R to harvest one outcome. (b) By learning a forward
model of the environment (essentially a state–action–outcome tree), the rat can decide whether to turn L or R at S1 by searching through the tree (simulating its next action
choices) and finding the path with the highest overall utility. Crucially, the current motivational state of the rat defines the relevant mapping between outcomes and utilities
(numbers in boxes), such that when hungry (yellow), the rat will find choice L optimal at S1, but when thirsty (blue), it will prefer R. Behavior is thus goal-directed. (c) By
contrast, a caching system does not represent the forward model, but rather stores (caches) learned values (in common-currency units) for every action at every state. After
many learning trials, for each (state,action) pair, these approximate the experienced sum utilities of the outcomes which were eventually reached after taking this action at
this state. Action selection simply involves choosing the action with the greatest cached value at the current state. Because the values are divorced from the identities of the
outcomes produced by different actions, changes in the outcome–utility mapping cannot be translated into appropriate changes in values. However, the motivational state
(hunger, H) can be stored as part of the state representation. In this way, action selection can be modified to match a different motivational mapping (e.g. relevant to thirst,
T) if the set of (state,action) values relevant to that state {(T;S1,R),(T;S2,L),. . .} has previously been learned.

www.sciencedirect.com
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Devaluation is impaired in OCD

Gillan et al., 2011 AJP
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edge of the relationship between their actions and the vari-
ous outcomes to direct their choices to valuable outcomes 
(and away from devalued outcomes). Second, we admin-
istered a questionnaire that explicitly probed knowledge 
of the relationships between stimuli, responses, and out-
comes. Finally, we used a novel slips-of-action test (Figure 
1D), in which participants could respond to stimuli that sig-
naled either still valuable or devalued outcomes. Here, the 
goal-directed and habitual systems compete for behavioral 
control, and this provides a more sensitive index of which 
system retains relative control. Responses to devalued out-
comes, or slips of action, imply a lack of sensitivity to out-
come value and are therefore indicative of the dominance 
of habitual response control. We predicted that overreliance 
on the habit system would cause patients with OCD to com-
mit more slips of action than the comparison subjects.

Method

Participants

This study was approved by the Hertfordshire Research Ethics 
Committee. Patients were recruited from a specialist outpatient 
OCD clinic and were screened by the consultant psychiatrist 
(N.A.F.) using an extended clinical interview to ensure that they 

panies a compulsive urge (14). Based on behavioral par-
allels between habits and OCD compulsions, we hypoth-
esized that a defi cit in goal-directed action control, and a 
consequent overreliance on habit formation, may underlie 
compulsivity in OCD. Furthermore, there is consensus that 
dysfunction in the orbitofrontal and cingulate cortices and 
in the caudate nucleus plays an important role in OCD 
(2, 15, 16). These same regions have been implicated in 
goal-directed control (10, 12, 13, 17, 18) and habit learning 
(19–21). Therefore, impairment of this frontostriatal loop 
(22) in patients with OCD is likely to cause disruptions in 
the goal-directed system and cause an overreliance on ha-
bitual control.

To test this hypothesis, we employed a series of tasks, as 
depicted in Figure 1. During the initial training stage (Fig-
ure 1B), participants learned to respond to different stimuli 
in order to gain outcomes that would earn them points. A 
baseline of habitual behavior was established by using in-
congruent events on a subset of trials, which have been 
shown to elicit habitual responses in healthy participants 
(13, 23, 24) (Figure 1A; see Method section). After the train-
ing stage, we tested relative goal-directed versus habitual 
control. The fi rst of three tests was an outcome devaluation 
test (Figure 1C), in which participants must use their knowl-

FIGURE 1. Instrumental Learning Task Descriptiona

Standard discrimination Incongruent discriminationCongruent discrimination
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a Panel A illustrates the three discrimination types: standard, congruent, and incongruent. Panel B illustrates the training phase. In this ex-
ample from the standard discrimination, participants are presented with grapes on the outside of the box. If the incorrect (left) key is pressed, 
an empty box is revealed (and no points are earned). If the correct (right) key is pressed, participants are rewarded with cherries on the inside 
of the box (and points). Panel C illustrates the outcome devaluation test. In this example, participants are presented with two open boxes 
with a melon and cherries inside. The red cross (or X) superimposed on the cherries indicates that this fruit type is no longer worth any points. 
The correct response in this example would be to press the left key (which during training yielded the still-valuable melon outcome). Panel 
D illustrates the slips-of-action test. In this example, the initial instruction screen shows that the pineapple and cherries outcomes will now 
lead to the subtraction of points, as indicated by the red crosses. The other four outcomes are still valuable. Following the instruction screen, 
participants are presented with a rapid succession of the fruit stimuli (on the front door of the boxes) and are asked to press the correct keys 
(“Go”) when a stimulus signals the availability of a still-valuable outcome inside the box but to refrain from responding (“No-Go”) when the 
outcome inside the box has been devalued. In this particular example, participants should press the correct key when the apple stimulus is 
depicted on the front door (“Go”) but should refrain from responding to the grapes stimulus (“No-Go”).
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ety contributed to the group differences observed, we used 
analyses of covariance (ANCOVAs) with state and trait anx-
iety scores from the State-Trait Anxiety Inventory (32) as 
covariates. As the OCD patient group had higher rates of 
depressive symptoms than comparison subjects, MADRS 
scores were included in separate ANCOVAs for each stage 
of the task. None of these effects was significant.

Discussion
Using an instrumental learning task, we present the 

first direct experimental evidence of a disruption in goal-
directed action control in OCD. Healthy comparison sub-
jects and patients with OCD were equally successful at 
using external feedback to guide instrumental choice be-

Finally, we investigated the significant devaluation by 
discrimination interaction (F=29.602, df=2, 76, p<0.001) 
using tests of simple effects. These tests confirmed that 
all participants responded fewer times when the outcome 
was devalued as opposed to still valuable on both congru-
ent (F=119.53, df=1, 38, p<0.001) and standard (F=11.02, 
df=1, 38, p<0.01) discriminations. However, as predicted, 
outcome devaluation failed to affect the number of re-
sponses on incongruent trials, which tend to be solved by 
habit strategy. There was no three-way interaction.

Questionnaires of  Response and Outcome 
Knowledge

All of the participants completed a questionnaire to test 
their explicit knowledge of responses and outcomes. The 
scores on the questionnaires could be 2, 1, or 0 for each of 
the discriminations. A significant main effect of discrimi-
nation (F=7.06, df=2, 98, p<0.01) was investigated using 
Bonferroni-corrected pairwise comparisons. Overall, par-
ticipants’ explicit knowledge of the congruent contingen-
cies was better than knowledge of the standard and incon-
gruent contingencies (p<0.05 in all cases). Crucially, there 
was an interaction between group and explicit knowledge 
(F=8.31, df=1, 49, p<0.01). Simple effects analyses revealed 
that while knowledge of the appropriate responses to the 
stimuli did not differ between comparison subjects and pa-
tients with OCD, knowledge of the associated outcomes was 
significantly worse in patients (F=14.915, df=1, 49, p<0.001) 
(Figure 3). Furthermore, the patients’ outcome knowledge, 
and not response knowledge, was positively correlated 
with difference scores from the slips-of-action test (r=0.61, 
p<0.005), indicating that the failure to acquire outcome 
knowledge during the training stage was associated with 
habitual response control during the slips-of-action test.

Additional Analyses Controlling for Differences in 
Anxiety and Depression

Stress (33, 34) and anxiety (35) can cause impairments in 
goal-directed action control. To investigate whether anxi-

FIGURE 3. Performance on the Slips-of-Action Test and the 
Explicit Response and Outcome Questionnaire in a Study 
of Goal-Directed Behavior and Habit Learning in Obses-
sive-Compulsive Disorder (OCD)a
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a The upper panel shows the percentage of responses made by the 
OCD and comparison groups in the slips-of-action test, and the 
lower panel shows the mean accuracy scores for the OCD and com-
parison groups on the explicit response and outcome question-
naire. Error bars denote standard deviations.

b While there was no group difference in percentage response to 
valuable outcomes, patients with OCD responded significantly 
more often for outcomes that were devalued relative to compari-
son subjects (F=17.43, df=1, 38, p<0.001).

c Groups did not differ in their knowledge of the correct responses 
from the training stage. Patients with OCD, however, showed signif-
icantly worse outcome knowledge relative to comparison subjects 
(F=14.92, df=1, 49, p<0.001).

FIGURE 2. Response Accuracy Over the Course of Six 
Blocks in the Instrumental Discrimination Training for Par-
ticipants in a Study of Goal-Directed Behavior and Habit 
Learning in Obsessive-Compulsive Disorder (OCD)a
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ety contributed to the group differences observed, we used 
analyses of covariance (ANCOVAs) with state and trait anx-
iety scores from the State-Trait Anxiety Inventory (32) as 
covariates. As the OCD patient group had higher rates of 
depressive symptoms than comparison subjects, MADRS 
scores were included in separate ANCOVAs for each stage 
of the task. None of these effects was significant.

Discussion
Using an instrumental learning task, we present the 

first direct experimental evidence of a disruption in goal-
directed action control in OCD. Healthy comparison sub-
jects and patients with OCD were equally successful at 
using external feedback to guide instrumental choice be-

Finally, we investigated the significant devaluation by 
discrimination interaction (F=29.602, df=2, 76, p<0.001) 
using tests of simple effects. These tests confirmed that 
all participants responded fewer times when the outcome 
was devalued as opposed to still valuable on both congru-
ent (F=119.53, df=1, 38, p<0.001) and standard (F=11.02, 
df=1, 38, p<0.01) discriminations. However, as predicted, 
outcome devaluation failed to affect the number of re-
sponses on incongruent trials, which tend to be solved by 
habit strategy. There was no three-way interaction.

Questionnaires of  Response and Outcome 
Knowledge

All of the participants completed a questionnaire to test 
their explicit knowledge of responses and outcomes. The 
scores on the questionnaires could be 2, 1, or 0 for each of 
the discriminations. A significant main effect of discrimi-
nation (F=7.06, df=2, 98, p<0.01) was investigated using 
Bonferroni-corrected pairwise comparisons. Overall, par-
ticipants’ explicit knowledge of the congruent contingen-
cies was better than knowledge of the standard and incon-
gruent contingencies (p<0.05 in all cases). Crucially, there 
was an interaction between group and explicit knowledge 
(F=8.31, df=1, 49, p<0.01). Simple effects analyses revealed 
that while knowledge of the appropriate responses to the 
stimuli did not differ between comparison subjects and pa-
tients with OCD, knowledge of the associated outcomes was 
significantly worse in patients (F=14.915, df=1, 49, p<0.001) 
(Figure 3). Furthermore, the patients’ outcome knowledge, 
and not response knowledge, was positively correlated 
with difference scores from the slips-of-action test (r=0.61, 
p<0.005), indicating that the failure to acquire outcome 
knowledge during the training stage was associated with 
habitual response control during the slips-of-action test.

Additional Analyses Controlling for Differences in 
Anxiety and Depression

Stress (33, 34) and anxiety (35) can cause impairments in 
goal-directed action control. To investigate whether anxi-

FIGURE 3. Performance on the Slips-of-Action Test and the 
Explicit Response and Outcome Questionnaire in a Study 
of Goal-Directed Behavior and Habit Learning in Obses-
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b While there was no group difference in percentage response to 
valuable outcomes, patients with OCD responded significantly 
more often for outcomes that were devalued relative to compari-
son subjects (F=17.43, df=1, 38, p<0.001).

c Groups did not differ in their knowledge of the correct responses 
from the training stage. Patients with OCD, however, showed signif-
icantly worse outcome knowledge relative to comparison subjects 
(F=14.92, df=1, 49, p<0.001).
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Devaluation is impaired in OCD

Gillan et al., 2013 Biol Psych

To this end, we conducted a devaluation test before overtraining
to assess if OCD patients exhibit a general failure to learn that what
was once dangerous is now safe. Moreover, we recorded levels of
self-report shock expectancy following the habit test to determine
if responding could be defined as habitual, i.e., was evident in spite
of low expectancy of shock. In addition to these two tests of safety
learning, we used questionnaires to test explicit knowledge of task
contingencies. This allowed us to test if a cognitive, specifically an
instrumental learning, deficit in the OCD group might better
explain habit-like responding in spite of outcome devaluation.

Beyond irrational belief, conditioned fear and anxiety are also
thought to be important for OCD (10) and indeed can bias
healthy individuals to behave habitually (11,12). To test if OCD
patients showed stronger conditioned arousal to warning stimuli
during the devaluation test and whether this might cause
overactive habit formation, we recorded skin conductance
responses (SCRs) throughout the experiment. We predicted that
OCD patients would be no more fearful of the conditioned
stimuli than control subjects and that their behavioral habits
would not be mediated by any such difference.

After the experiment, we recorded subjective accounts of why
participants felt compelled to respond to the devalued stimulus
during the critical habit test. Finally, to assess the ecological
validity of overactive habit formation as a model of compulsivity,
we asked subjects to rate the experiential urge to respond to the
devalued stimulus in our critical habit test. If habits are more than
just action slips, subjects should not only perform them following
overtraining but also feel compelled to do so.

The primary hypothesis of this study was that OCD patients
would show more behavioral habits than healthy control subjects
following overtraining and these habits would be associated with
a subjective urge to perform them. The secondary hypotheses
were 1) both groups would show similar general sensitivity to
devaluation (before overtraining), contingency knowledge, and
shock expectancy following devaluation between groups; and 2)
skin conductance responses, a putative proxy for physiological
fear, would not differ between groups.

Methods and Materials

Twenty-Five OCD patients (11 male patients) and 25 healthy
control subjects (11 male subjects) matched for age, IQ, handed-
ness (left handed: four OCD patients, five control subjects), and
years in education participated in this study (Table 1). Control
subjects were recruited from the community, were unmedicated,
and had never suffered from a psychiatric disorder. Obsessive-
compulsive disorder patients were screened by a psychiatrist
using an extended clinical interview to ensure they met the DSM-
IV-Text Revision criteria for OCD, exceeding 12 on the Yale-Brown
Obsessive Compulsive Scale (Y-BOCS) (13), and had no comorbid
psychiatric disorders, past or present. The only exceptions to this
were two patients who had been previously diagnosed with
depression and one patient who had prior alcohol dependence.
We did not screen subjects for Axis II personality disorders, save
for obsessive-compulsive personality disorder (OCPD), which was
assessed using the Compulsive Personality Assessment Scale (14).

Left

Right

Left

Right

Stimulator A Stimulator B

DevaluedValued

Figure. 1. Task design. (A) Warning stimuli. The blue stimulus predicts a right shock, the red stimulus a left shock. If the correct avoidance response (e.g.,
left pedal to avoid left shock) is produced on time, subjects avoid shock. (B) Devaluation procedure. The electrodes on one side are disconnected from
their connector (devalued), and the electrodes on the other side are unchanged (valued).

Table 1. Demographic Information

Measures Control Subjects OCD Patients t df p

Age 41.04 (13.22) 40.6 (13.45) .127 1,48 .899
Years in Education 16.4 (2.19) 15 (3.04) 1.865 1,48 .068
NART 36 (7.31) 34.88 (7.14) .548 1,48 .587
Y-BOCS 0 22.76 (5.27)
MADRS .96 (3) 6.6 (3.7) 5.875 1,48 !.001
STAI-State 30.16 (5.83) 44 (9.03) 6.437 1,48 !.001
STAI-Trait 32.44 (7.33) 60 (8.67) 12.140 1,48 !.001
OCI-R Total 8.68 (8.4) 33.16 (11.22) 8.733 1,48 !.001
CPAS 3.08 (3.81) 10.28 (6.13) 4.991 1,48 !.001

Standard deviations are in parentheses.
CPAS, Compulsive Personality Assessment Scale; MADRS, Montgomery-Åsberg Depression Rating Scale; NART, National

Adult Reading Test; OCD, obsessive-compulsive disorder; OCI-R, Obsessive-Compulsive Inventory-Revised (40); STAI, State-
Trait Anxiety Inventory (39); Y-BOCS, Yale-Brown Obsessive Compulsive Scale.
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Devaluation is impaired in OCD

Gillan et al., 2013 Biol Psych

responded more to the valued than the devalued stimulus,
F1,48 ¼ 200.08, p ! .001 (Figure 2E). There was no difference
between groups or group by stimulus interaction, F ! 1, indicat-
ing that OCD patients were unimpaired in their ability to learn
about the safety of the devalued stimulus and withhold unneces-
sary responses accordingly.

In the habit test, following overtraining, although both groups
showed a strong devaluation effect, OCD patients showed
greater stimulus-response habit learning than control subjects
(Figure 3A), evidenced by greater avoidance of a stimulus that
was no longer predictive of shock (devalued). There was a
significant main effect of group and a group-by-stimulus inter-
action, both F1,48 ¼ 4.725, p ¼ .035. These effects were driven by
the persistent responding to the devalued stimulus by OCD

patients (mean ¼ .84, SE ¼ .25) compared with control subjects
(mean ¼ .16, SE ¼ .12), F1,48 ¼ 5.695, p ¼ .021. Responses to the
valued stimulus did not differ between groups (OCD: mean ¼ 3.8,
SE ¼ .08; control subjects: mean ¼ 3.8, SE ¼ .1). Overall, there was
greater responding to the valued compared with the devalued
stimulus, indicating that there was a significant devaluation effect
in both groups, F1,48 ¼ 445.095, p ! .001. The majority of subjects
did not continue to respond in the habit test, with just nine OCD
patients and two control subjects making any responses. Given
that responses were not normally distributed, we conducted a
Mann-Whitney U test to confirm the results of our analysis of
variance using a nonparametric test. This confirmed that relative
to control subjects, OCD patients responded more to the
devalued stimulus (U50 ¼ 223.5, z ¼ "2.384, p ¼ .017) and there

Figure 2. Training accuracy and general devaluation sensitivity. Error bars denote SEM. (A, B) Discriminative avoidance learning from training sessions.
There were no group differences in total avoidance performance or skin conductance responses (SCRs) to warning stimuli. (C, D) Rate of false alarm
responses and SCRs to safe stimulus did not differ between groups. (E, F) Devaluation sensitivity test. There were no differences in behavioral or
physiological (SCR) sensitivity to devaluation. CS, conditioned stimulus; OCD, obsessive-compulsive disorder.
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was no difference in responses to the valued stimulus (U50 ¼
302.5, z ¼ ".291, p ¼ .771). A chi-square test confirmed that more
individuals in the OCD group responded during the habit test
(w2

1 ¼ 5.71, p ¼ .017).
The rate of habitual responding in OCD patients correlated

marginally with overall Y-BOCS scores, r ¼ .357, p ¼ .08. This
was driven by the obsessions subscale on the Y-BOCS r ¼ .397,
p ¼ .049, and not the compulsions subscale, r ¼ .102, p ¼ .627.
Other nonsignificant trends in positive correlations existed
between habit responses and the Obsessive-Compulsive Inven-
tory-Revised obsessions (r ¼ .357, p ¼ .08) and hoarding (r ¼
.387, p ¼ .056) subscales and state anxiety, r ¼ .352, p ¼ .084.
There was no significant correlation between habit responses
and trait anxiety, r ¼ .11, p ¼ .602, or OCPD symptoms
(Compulsive Personality Assessment Scale scores), r ¼ ".061,
p ¼ .771. As only a subset of OCD patients continued to
respond in the habit test, we compared OCD patients who
responded and those who did not. We found no significant
differences in any of the clinical variables recorded, including
symptom subtypes. Finally, as many patients were medicated,
we tested for differences between medicated and unmedicated
patient responses to the devalued stimulus. Although we found
no difference (Fs ! 1), given the small sample size (unmedicated

7, medicated 18), this does not eliminate the possibility of a
medication effect.

Skin Conductance
The behavioral data discussed in this section pertain only to

subjects for whom SCR data could be analyzed. Nevertheless, the
main results remain significant in this smaller subset (e.g.,
stimulus-by-group interaction: F1,42 ¼ 5.224, p ¼ .027). To test
if habitual responding in the OCD group was the result of
heightened conditioned arousal to threatening stimuli or general
arousal in response to stimulus presentation (SCRs to the safe
stimulus), we compared SCRs between groups during training.
There was no difference in SCRs between OCD (mean ¼ .374,
SE ¼ .098) and control subjects (mean ¼ .574, SE ¼ .104) to the
warning stimuli, F1,42 ¼ 1.96, p ¼ .169 (Figure 2B), or to the safe
stimulus, F ! 1, (OCD: mean ¼ ".535, SE ¼ .068; control subjects:
mean ¼ ".493, SE ¼ .081) (Figure 2D). We also compared SCRs
during our two extinction tests to assess whether our OCD habit
effect was caused by a failure to decrease (extinguish) condi-
tioned arousal in light of devaluation. The data obtained during
these tests were highly variable given the low number of trials,
and therefore these results should be interpreted with caution.
There was no difference in overall SCR between OCD patients

Figure 3. Habits in obsessive-compulsive disorder (OCD) patients. Error bars denote SEM. (A) Habit test. Behavioral responses made to the valued
stimulus did not differ, F ! 1, but OCD patients responded significantly more to the stimulus that explicitly no longer predicted shock (devalued) than
control subjects. (B) Skin conductance response (SCR) of OCD patients and control subjects during critical habit test did not differ. (C) Obsessive-
compulsive disorder patients reported a significantly stronger urge to make avoidance responses in spite of devaluation, F1,48 ¼ 7.016, p ¼ .011. (D) No
group difference in explicit shock expectancy in light of the devaluation procedure. *Significant at p ! .05. CS, conditioned stimulus.
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Two-step task

Daw et al., 2011 Neuron
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Devaluation and two-step task

Friedel et al., 2014 Front Neurosci

Friedel et al. Devaluation and sequential decisions

FIGURE 6 | Correlation of “model-based” [sequential decision-making
(2-step) interaction term] and “goal-directed” (devaluation paradigm
interaction term) behavior (n = 12, Spearman R = 0.74, p = 0.003).

Here, we aim to assess the construct validity of these two measure-
ments which have both been suggested to capture the dichotomy
of goal-directed or model-based vs. habitual or model-free con-
trol, respectively. In the selective devaluation task, we found evi-
dence of goal-directed choices as subjects decreased their choice
for a stimulus associated with a now devalued outcome. In the
sequential decision-making task, subjects displayed model-based
behavior, which is by definition goal-directed, indicating that par-
ticipants used the transition structure to solve the task as it is
indicated by the significant reward by state interaction and by the
weighting parameter ω derived from computational modeling.

As comprehensively reviewed by Dolan and Dayan (2013)
those two different operationalizations in part stem from different
methodological and historical perspectives. Both selective devalu-
ation and sequential decision-making have been used to describe
similar behavioral patterns but they have never been directly
related to one another in a sample of human subjects. Here we
found, that measures of the individual degree of goal-directed
behavior assessed with selective devaluation and model-based
behavior assessed during sequential decision-making indeed cor-
relate positively. This provides evidence for the construct validity
of both measurements indicating that they measure the same con-
cept grounded in a single common framework as suggested by
Dolan and Dayan (2013).

Here, we suggest that goal-directed behavior as measured dur-
ing selective devaluation reflects one of the many facets of model-
based learning which is also applicable to several other tasks, in
particular instrumental reversal learning (Hampton et al., 2006;
Li and Daw, 2011; Schlagenhauf et al., 2014) but also Pavlovian
conditioning (Huys et al., 2012; Prevost et al., 2013). This may
suggest that the individual balance between the two different
modes of control over instrumental choices may be relevant
for a variety of tasks and reflect enduring interindividual dif-
ferences that are consistent across tasks. Although this balance
between goal-directed and habitual control has been considered

as interindividual trait (Doll et al., 2012; Dolan and Dayan, 2013)
we have to caution that the temporal stability of these measures
has not been shown—as it has been the case e.g., for cognitive
functions like working memory (Klein and Fiss, 1999; Waters and
Caplan, 2003).

Another related question—not addressed here—concerns the
notion by Daw et al. (2005) that model-free and model-based
learning strategies compete with each other based on the relative
certainty of their estimates (Daw et al., 2005). From this theoreti-
cal perspective, the model-based system is computationally costly:
When individuals face a decision problem, the costs of opportuni-
ties of the model-based system need to rule out the benefits of the
simple model-free system to govern control over a decision (also
compare Niv et al., 2007). In other words, use of the model-based
system should be beneficial compared to the model-free system.
Lee et al. (2014) suggested that an arbitrator keeps track of the
degree of reliability of the two systems and uses this information
in order to proportionately allocate behavior control depending
on task demands.

The sequential decision-making task used in the present study
gives an individual degree of both model-free and model-based
behavior. We observed that the degree of goal-directed behavior
in the devaluation task was not related to measurements repre-
senting the degree of the model-free behavior during sequential
decisions (as indicated by the main effect of reward or a high
reinforcement eligibility parameter derived from computational
modeling). This indicates the specificity of the correlation of goal-
directed choices measured with the devaluation procedure and
the degree of model-based behavior measured with the sequential
decision-making task. One might have expected that a continued
choice of the devalued option indicates habitual behavior which
is then represented in a small interaction term. A correlation
of the interaction term of the devaluation paradigm with mea-
sures of model-free behavior in the sequential decision-making
task would have indicated that habitual behavior can be induced
by the devaluation procedure. The absence of such an associa-
tion is in line with the findings from Valentin et al. (2007) that
on the neuronal level no activation of structures associated with
habitual behavior like e.g., the putamen was observed so that
the authors conclude that their selective devaluation paradigm
is indeed better suited to reflect goal-directed behavior whereas
habitual behavior might be observed in tasks using overtraining
(Tricomi et al., 2009). To this end, associations between the bal-
ance in between model-based and model-free control determined
in sequential decision-making should be related to behavioral
measures of habitual responding in overtraining paradigms. In
the sequential decision-making task used here the outcome prob-
abilities driving model-free behavior during sequential decision-
making were changing slowly (according to Gaussian random
walks) to facilitate continuous updating of decision values. This
was implemented to avoid a moment in time during the task when
a purely model-free strategy becomes clearly advantageous com-
pared to the more complex model-based strategy and might have
had an effect on the development of habit-like patterns.

Thus, it is important to note that both paradigms may
provide different insight into the habitual system, while goal-
directed/model-based measurements are more related (and can

Frontiers in Human Neuroscience www.frontiersin.org August 2014 | Volume 8 | Article 587 | 7
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Example code

‣ www.cmod4mh.org/emfit.zip 

‣ batchRunEMfit(‘mTwostep’) 
• will generate example data 
• fit all models in modelList.m 
• perform model comparison 
• generate surrogate data 
• generate plots for basic sanity checks 

‣ basic model is llm2b2alr.m

http://www.cmod4mh.org/emfit.zip
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Hierarchical is definitely better
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Twostep statistics
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“Compulsive” disorders

Voon et al., 2015 Mol. Psychiatry

These results demonstrate that diverse disorders of compulsiv-
ity are accompanied by an excessive tendency toward model-free
learning. We also conducted a parallel analysis of the behavioral
data seeking markers of model-free and model-based learning
more directly in subjects’ raw switching behavior, thereby relaxing
some of the assumptions of the full computational model
and visualizing the effects more directly.4 The results of this
analysis (Supplementary Figure S1,Supplementary Table S3 and
Supplementary Text) were substantially similar to the computa-
tional analysis.
Next, we used voxel-based morphometry in a different set of

HVs (mean age 23.22 (s.d. 2.75); 19 males) to examine how brain
volume related to the relative engagement of model-based
learning, as measured by the parameter w. Taken as an
independent regressor, in HVs, w was positively correlated with
left medial orbitofrontal cortical (OFC) volume (peak coordinates
reported in Montreal Neurological Institute x y z (mm) =− 8
54 − 23, Z = 4.90, cluster size = 69, 87, 10 for three clusters, whole
brain family-wise error (FWE) corrected P= 0.01), with a positive
direction of effect meaning that greater cortical volume was
associated with a stronger tendency toward model-based learning
(Figure 3). Conducting small volume correction (SVC) analyses for
hypothesized regions in striatum, prefrontal and parietal areas, we
found that w was also positively correlated with bilateral caudate
volume (left: − 9 5 6, Z = 3.18, SVC corrected Po0.05; right: 8 6 8,
Z = 3.45, SVC FWE corrected Po0.05; Figure 3) but not putamen or
ventral striatum. Furthermore, w was also positively correlated
with bilateral lateral prefrontal (Brodmann area 46, right: 53 23 26,
Z = 4.11, SVC FWE corrected P= 0.01; left: − 45 20 27, Z = 3.94, SVC
corrected P= 0.02) but not parietal cortex volume. The persevera-
tion index was not associated with any significant correlations. The
inclusion of age and BDI scores as covariates of no interest in a
subanalysis did not change the findings.
Finally, we examined whether these same neural systems were

associated with pathological compulsive disorders, where exces-
sive model-free behavior had been observed. We compared 20
obese subjects with and 20 without BED focusing on the regions
shown to be associated with normal variation in model-free versus

model-based learning in our HV study (medial OFC, caudate and
lateral prefrontal cortex). Obese subjects with BED had lower left
ventral striatal volume (−20 15 − 9, Z = 4.91, cluster size = 9, FWE
whole brain corrected Po0.05) and left lateral OFC volumes (−32
47 − 11, Z = 4.77, cluster size = 5, FWE whole brain corrected
Po0.05) compared with those without BED. Obese subjects with
BED also had lower bilateral medial OFC volume (3 36 − 17,
Z = 3.63, SVC FWE corrected Po0.05) and bilateral caudate
volume (left: − 9 17 − 15, Z = 3.68, SVC FWE corrected Po0.05
and right: 9 14 − 12, Z = 3.42, SVC FWE corrected Po0.05) com-
pared with those without BED (Figure 4). With the addition of the
model-based parameter w from behavior as a covariate, these
group-wise medial OFC, caudate and ventral striatal findings were
no longer significant (no voxels observed in these regions includ-
ing when lowering the threshold to an uncorrected Po0.05)
suggesting that the individual differences in learning bias might
largely explain differences in cortical and striatal volumes between
groups of obese subjects with and without BED.

DISCUSSION
A wealth of preclinical studies and influential theory suggest that
stimulant addiction is associated with abnormal habit expression;1

similar suggestions have been made for repetitive avoidance
behaviors (OCD). Here, we show that these disorders are also
associated with a significant shift in habit formation, evident early
in the learning of a new decision problem, and that the
abnormality can be quantified in terms of a detailed computa-
tional learning mechanism with strong neural foundations, model-
free learning.3,5 Although abstinent EtOH subjects did not differ
from HVs, this lack of a difference may be in part mediated by
abstinence. Early abstinence was associated with greater habit
formation with a shift towards greater goal-directed behaviors
with prolonged abstinence. This relationship suggests a possible
role for top-down volitional control in decreasing habit formation.
We similarly demonstrate greater model-free habit formation in
obese subjects with binge eating behaviors, as compared with
those without, suggesting that this neurocomputational mechan-
ism may be commonly implicated across a broad range of
disorders and in particular supporting similarities between the
subtype of binge eating and substance use disorders.
Our results also implicate defined neural substrates in these

effects. We show that in HVs, lower gray matter volumes in the
caudate, medial OFC and lateral prefrontal cortices were asso-
ciated with a greater shift towards model-free habit formation.
These findings dovetail with rodent lesion and human imaging
studies implicating these regions in model-based goal-directed
behaviors. Blood-oxygen-level dependent activity in various
cortical regions covaries with aspects of model-based learning in
HVs: for instance, the state prediction error, or the discrepancy
between the observed and expected state transition is repre-
sented in the lateral prefrontal cortex and intraparietal sulcus.9

Further evidence of the role of cortical regions comes from rodent
studies showing that their ability to solve (Pavlovian) reversal tasks
when the identity rather than the value of outcomes changes
depends on the orbitofrontal cortex—this is another sign of
model-based rather than model-free processing10,14 although
these regions may be more likely lateral rather than medial
orbitofrontal cortex. Using a three-step decision tree task of which
this current task is its predecessor, model-based and model-free
values were shown to be encoded in the caudate and putamen,
respectively, whereas the ventromedial prefrontal cortex accessed
both systems.15 The present results also tie these systems to
compulsion, in that BED is similarly associated with lower bilateral
caudate and bilateral medial OFC and left ventral striatal gray
matter volumes, though not with lateral prefrontal volume. These
volumetric differences between obese subjects with and without
BED have not been reported in previous studies. Our findings

Figure 2. Computational algorithm parameters. (Top graph) Weight-
ing parameter (w) and (bottom graph) perseveration indices. Patient
group and matched healthy volunteer differences: *Po0.05
**P= 0.001. BED, obese subjects with binge eating disorder; HV,
healthy volunteer; Meth, methamphetamine-dependent; Obese,
obese subjects without binge eating disorder; OCD, obsessive-
compulsive disorder. Error bars represent s.e.m.

Habit formation in addiction and OCD
V Voon et al
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Validation in large online sample

Gillan et al., 2016 eLife
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Across questionnaires
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Ventral Striatal F-DOPA promotes MB choices

Deserno et al., 2015 PNAS
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&IG� �� 0RESYNAPTIC DOPAMINE AND NEURAL LEARNING SIGNATURES� #ORRELATION
BETWEEN RIGHT VENTRAL STRIATAL PRESYNAPTIC DOPAMINE +I AND !	 MODELFREE
LEARNING SIGNALS IN RIGHT VENTRAL STRIATUM �R����� P����	 AND "	 MODELBASED
SIGNATURES IN RIGHT LATERAL PREFRONTAL CORTEX �R����� P����	�

	G.3*
 TUVEJFT JO IVNBOT 	F�H� ��
� 0O UIF PUIFS IBOE JOEJWJE�
VBM WBSJBUJPO PG QSFTZOBQUJD EPQBNJOF JO UIF TUSJBUVN RVBOUJ�
GJFE VTJOH OFVSPDIFNJDBM JNBHJOH JT LOPXO UP QPTJUJWFMZ SFMBUF
UP WBSJBCJMJUZ JO ಫQSFGSPOUBMಬ DPHOJUJWF DBQBDJUJFT 	�� ��
 XIJDI
BMTP MJNJU UIF DBQBDJUZ GPS NPEFM�CBTFE MFBSOJOH 	��
� *OEFFE

EFQMFUJPO PG QSFTZOBQUJD EPQBNJOF QSFDVSTPST BOE 1BSLJOTPOಬT
EJTFBTF CPUI DPNQSPNJTFE HPBM�EJSFDUFE CFIBWJPS JO B EFWBMVB�
UJPO FYQFSJNFOU BOE B TMJQT�PG�BDUJPO UFTU XIJMF IBCJUVBM MFBSOJOH
SFNBJOFE JOUBDU 	�� ��
� 'VSUIFSNPSF B QIBSNBDPMPHJDBM DIBM�
MFOHF XJUI -�%01" B NBOJQVMBUJPO LOPXO UP CPPTU PWFSBMM CSBJO
EPQBNJOF MFWFMT FOIBODFE NPEFM�CBTFE PWFS NPEFM�GSFF DIPJDFT
JO B TFRVFOUJBM EFDJTJPO�NBLJOH UBTL 	��
� 5IFTF TUVEJFT SBJTF UIF
QPTTJCJMJUZ UIBU B CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE
DPOUSPM JT JOUJNBUFMZ SFMBUFE UP WBSJBUJPOT JO EPQBNJOF MFWFMT CVU
BSF BHOPTUJD BT UP UIF MJLFMZ MPDVT PG UIJT JOGMVFODF�

" SBEJPMBCFMFE WBSJBOU PG -�%01" ��'�%01" BMMPXT RVBO�
UJGJDBUJPO PG JOEJWJEVBM MFWFMT PG QSFTZOBQUJD EPQBNJOF JO WJWP
VTJOH 1PTJUSPO &NJTTJPO 5PNPHSBQIZ 	1&5� ��
� 4DIMBHFOIBVG FU
BM� 	����
 VTFE UIJT NFUIPEPMPHZ UP TIPX BO JOWFSTF SFMBUJPOTIJQ
CFUXFFO WFOUSBM TUSJBUBM QSFTZOBQUJD EPQBNJOF MFWFMT BOE BO G.3*
TJHOBM UIBU JOEFYFE WFOUSBM TUSJBUBM NPEFM�GSFF MFBSOJOH TJHOBMT
	��
� 1SFTZOBQUJD EPQBNJOF MFWFMT JO WFOUSBM TUSJBUVN BSF B DBO�
EJEBUF NBSLFS PG UIF CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�
CBTFE EFDJTJPO�NBLJOH HJWFO FWJEFODF UIBU WFOUSBM TUSJBUBM MFTJPOT
JNQBJS NPEFM�CBTFE MFBSOJOH 	��
 BOE WFOUSBM TUSJBUBM BDUJWBUJPO
FODPEFT B TJHOBUVSF PG CPUI NPEFM�GSFF BOE NPEFM�CBTFE MFBSOJOH
	�
� 'VSUIFSNPSF QSFTZOBQUJD EPQBNJOF MFWFMT JO WFOUSBM TUSJBUVN
BSF OFHBUJWFMZ DPSSFMBUFE XJUI WFOUSBM TUSJBUBM NPEFM�GSFF MFBSOJOH
TJHOBMT 	��
�

)FSF XF DPNCJOF B UXP�TUFQ TFRVFOUJBM EFDJTJPO UBTL EVSJOH
G.3* XJUI ��'�%01" 1&5 UP RVBOUJGZ JOUFS�JOEJWJEVBM EJGGFS�
FODFT JO TUSJBUBM QSFTZOBQUJD EPQBNJOF MFWFMT� 0VS IZQPUIFTJT
XBT UIBU JOUFS�JOEJWJEVBM WBSJBUJPO JO QSFTZOBQUJD MFWFMT PG TUSJBUBM
EPQBNJOF XPVME QSFEJDU CFIBWJPSBM BOE OFVSBM TJHOBUVSFT PG
NPEFM�CBTFE BOE NPEFM�GSFF DPOUSPM�

2ESULTS
.PEFM�GSFF WFSTVT NPEFM�CBTFE DPOUSPM

5IF CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE DIPJDF
CFIBWJPS XBT BTTFTTFE VTJOH B UXP�TUFQ EFDJTJPO UBTL JO �� IFBMUIZ
QBSUJDJQBOUT 	'JHVSF �" � #
� *O UIJT UBTL TVCKFDUT IBE UP NBLF
UXP TFRVFOUJBM DIPJDFT CFUXFFO TUJNVMVT QBJST UP SFDFJWF B NPOF�
UBSZ SFXBSE� "U UIF GJSTU TUBHF FBDI DIPJDF PQUJPO MFE DPNNPOMZ
	��� QSPCBCJMJUZ
 UP POF PG UXP QBJST PG TUJNVMJ BOE SBSFMZ 	���
QSPCBCJMJUZ
 UP UIF PUIFS QBJS� "GUFS FOUFSJOH UIF TFDPOE TUBHF B
TFDPOE DIPJDF XBT GPMMPXFE CZ NPOFUBSZ SFXBSE PS OPU EFMJWFSFE
BDDPSEJOH UP TMPXMZ DIBOHJOH (BVTTJBO SBOEPN XBMLT UP GBDJMJ�
UBUF DPOUJOVPVT VQEBUJOH PG BDUJPO WBMVFT� " QVSFMZ NPEFM�CBTFE
MFBSOFS FYQMPJUT QSPCBCJMJUJFT JO UIF USBOTJUJPO TUSVDUVSF GSPN
UIF GJSTU UP UIF TFDPOE TUBHF XIJMF B QVSFMZ NPEFM�GSFF MFBSOFS
OFHMFDUT UIJT UBTL TUSVDUVSF� *U IBT CFFO TIPXO UIBU CFIBWJPS
TIPXT JOGMVFODF PG CPUI TZTUFNT 	�
 BOE BU BO JOEJWJEVBM MFWFM
B CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE DPOUSPM DBO CF
RVBOUJGJFE CZ B IZCSJE NPEFM� 5IJT IZCSJE NPEFM XFJHIUT UIF
EFDJTJPO WBMVFT PG UXP EFDJTJPO�NBLJOH BMHPSJUINT� 0OF BMHP�
SJUIN JOWPMWFT NPEFM�GSFF UFNQPSBM EJGGFSFODF MFBSOJOH XIJMF UIF
NPEFM�CBTFE BMHPSJUIN QFSGPSNT B USFF TFBSDI BOE VTFT FYQMJDJUMZ
JOTUSVDUFE USBOTJUJPO QSPCBCJMJUJFT UP QSPTQFDUJWFMZ VQEBUF GJSTU�
TUBHF EFDJTJPO WBMVFT 	TFF 4VQQPSUJOH *OGPSNBUJPO
� 5IF XFJHIU�
JOH HJWFO CZ UIF QBSBNFUFS ˶ JT PG NPTU JOUFSFTU IFSF� " IJHIFS
˶ JOEJDBUFT B CJBT UPXBSET NPEFM�CBTFE EFDJTJPO WBMVFT� .PEFMT
XFSF JNQMFNFOUFE BT JO UIF PSJHJOBM QBQFS CZ %BX FU BM� 	�
�
*O MJOF XJUI QSFWJPVT TUVEJFT 	� ��
 B IZCSJE NPEFM BHBJO CFTU
FYQMBJOFE DIPJDF CFIBWJPS JO UIF QSFTFOU TBNQMF BT EFUFSNJOFE
CZ B #BZFTJBO NPEFM TFMFDUJPO QSPDFEVSF 	&YDFFEBODF 1SPCBCJM�
JUZ���� TFF 5BCMF 4�� ��
�

1MFBTF JOTFSU 'JHVSF � BCPVU IFSF
4USJBUBM QSFTZOBQUJD EPQBNJOF BOE UIF CBMBODF PG CFIBWJPSBM

DPOUSPM
*O PSEFS UP UFTU XIFUIFS TUSJBUBM QSFTZOBQUJD EPQBNJOF MFW�

FMT QSFEJDU UIF CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE
DIPJDF CFIBWJPS XF VTFE UIF XFJHIUJOH QBSBNFUFS ˶ 	5BCMF
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	G.3*
 TUVEJFT JO IVNBOT 	F�H� ��
� 0O UIF PUIFS IBOE JOEJWJE�
VBM WBSJBUJPO PG QSFTZOBQUJD EPQBNJOF JO UIF TUSJBUVN RVBOUJ�
GJFE VTJOH OFVSPDIFNJDBM JNBHJOH JT LOPXO UP QPTJUJWFMZ SFMBUF
UP WBSJBCJMJUZ JO ಫQSFGSPOUBMಬ DPHOJUJWF DBQBDJUJFT 	�� ��
 XIJDI
BMTP MJNJU UIF DBQBDJUZ GPS NPEFM�CBTFE MFBSOJOH 	��
� *OEFFE

EFQMFUJPO PG QSFTZOBQUJD EPQBNJOF QSFDVSTPST BOE 1BSLJOTPOಬT
EJTFBTF CPUI DPNQSPNJTFE HPBM�EJSFDUFE CFIBWJPS JO B EFWBMVB�
UJPO FYQFSJNFOU BOE B TMJQT�PG�BDUJPO UFTU XIJMF IBCJUVBM MFBSOJOH
SFNBJOFE JOUBDU 	�� ��
� 'VSUIFSNPSF B QIBSNBDPMPHJDBM DIBM�
MFOHF XJUI -�%01" B NBOJQVMBUJPO LOPXO UP CPPTU PWFSBMM CSBJO
EPQBNJOF MFWFMT FOIBODFE NPEFM�CBTFE PWFS NPEFM�GSFF DIPJDFT
JO B TFRVFOUJBM EFDJTJPO�NBLJOH UBTL 	��
� 5IFTF TUVEJFT SBJTF UIF
QPTTJCJMJUZ UIBU B CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE
DPOUSPM JT JOUJNBUFMZ SFMBUFE UP WBSJBUJPOT JO EPQBNJOF MFWFMT CVU
BSF BHOPTUJD BT UP UIF MJLFMZ MPDVT PG UIJT JOGMVFODF�

" SBEJPMBCFMFE WBSJBOU PG -�%01" ��'�%01" BMMPXT RVBO�
UJGJDBUJPO PG JOEJWJEVBM MFWFMT PG QSFTZOBQUJD EPQBNJOF JO WJWP
VTJOH 1PTJUSPO &NJTTJPO 5PNPHSBQIZ 	1&5� ��
� 4DIMBHFOIBVG FU
BM� 	����
 VTFE UIJT NFUIPEPMPHZ UP TIPX BO JOWFSTF SFMBUJPOTIJQ
CFUXFFO WFOUSBM TUSJBUBM QSFTZOBQUJD EPQBNJOF MFWFMT BOE BO G.3*
TJHOBM UIBU JOEFYFE WFOUSBM TUSJBUBM NPEFM�GSFF MFBSOJOH TJHOBMT
	��
� 1SFTZOBQUJD EPQBNJOF MFWFMT JO WFOUSBM TUSJBUVN BSF B DBO�
EJEBUF NBSLFS PG UIF CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�
CBTFE EFDJTJPO�NBLJOH HJWFO FWJEFODF UIBU WFOUSBM TUSJBUBM MFTJPOT
JNQBJS NPEFM�CBTFE MFBSOJOH 	��
 BOE WFOUSBM TUSJBUBM BDUJWBUJPO
FODPEFT B TJHOBUVSF PG CPUI NPEFM�GSFF BOE NPEFM�CBTFE MFBSOJOH
	�
� 'VSUIFSNPSF QSFTZOBQUJD EPQBNJOF MFWFMT JO WFOUSBM TUSJBUVN
BSF OFHBUJWFMZ DPSSFMBUFE XJUI WFOUSBM TUSJBUBM NPEFM�GSFF MFBSOJOH
TJHOBMT 	��
�

)FSF XF DPNCJOF B UXP�TUFQ TFRVFOUJBM EFDJTJPO UBTL EVSJOH
G.3* XJUI ��'�%01" 1&5 UP RVBOUJGZ JOUFS�JOEJWJEVBM EJGGFS�
FODFT JO TUSJBUBM QSFTZOBQUJD EPQBNJOF MFWFMT� 0VS IZQPUIFTJT
XBT UIBU JOUFS�JOEJWJEVBM WBSJBUJPO JO QSFTZOBQUJD MFWFMT PG TUSJBUBM
EPQBNJOF XPVME QSFEJDU CFIBWJPSBM BOE OFVSBM TJHOBUVSFT PG
NPEFM�CBTFE BOE NPEFM�GSFF DPOUSPM�

2ESULTS
.PEFM�GSFF WFSTVT NPEFM�CBTFE DPOUSPM

5IF CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE DIPJDF
CFIBWJPS XBT BTTFTTFE VTJOH B UXP�TUFQ EFDJTJPO UBTL JO �� IFBMUIZ
QBSUJDJQBOUT 	'JHVSF �" � #
� *O UIJT UBTL TVCKFDUT IBE UP NBLF
UXP TFRVFOUJBM DIPJDFT CFUXFFO TUJNVMVT QBJST UP SFDFJWF B NPOF�
UBSZ SFXBSE� "U UIF GJSTU TUBHF FBDI DIPJDF PQUJPO MFE DPNNPOMZ
	��� QSPCBCJMJUZ
 UP POF PG UXP QBJST PG TUJNVMJ BOE SBSFMZ 	���
QSPCBCJMJUZ
 UP UIF PUIFS QBJS� "GUFS FOUFSJOH UIF TFDPOE TUBHF B
TFDPOE DIPJDF XBT GPMMPXFE CZ NPOFUBSZ SFXBSE PS OPU EFMJWFSFE
BDDPSEJOH UP TMPXMZ DIBOHJOH (BVTTJBO SBOEPN XBMLT UP GBDJMJ�
UBUF DPOUJOVPVT VQEBUJOH PG BDUJPO WBMVFT� " QVSFMZ NPEFM�CBTFE
MFBSOFS FYQMPJUT QSPCBCJMJUJFT JO UIF USBOTJUJPO TUSVDUVSF GSPN
UIF GJSTU UP UIF TFDPOE TUBHF XIJMF B QVSFMZ NPEFM�GSFF MFBSOFS
OFHMFDUT UIJT UBTL TUSVDUVSF� *U IBT CFFO TIPXO UIBU CFIBWJPS
TIPXT JOGMVFODF PG CPUI TZTUFNT 	�
 BOE BU BO JOEJWJEVBM MFWFM
B CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE DPOUSPM DBO CF
RVBOUJGJFE CZ B IZCSJE NPEFM� 5IJT IZCSJE NPEFM XFJHIUT UIF
EFDJTJPO WBMVFT PG UXP EFDJTJPO�NBLJOH BMHPSJUINT� 0OF BMHP�
SJUIN JOWPMWFT NPEFM�GSFF UFNQPSBM EJGGFSFODF MFBSOJOH XIJMF UIF
NPEFM�CBTFE BMHPSJUIN QFSGPSNT B USFF TFBSDI BOE VTFT FYQMJDJUMZ
JOTUSVDUFE USBOTJUJPO QSPCBCJMJUJFT UP QSPTQFDUJWFMZ VQEBUF GJSTU�
TUBHF EFDJTJPO WBMVFT 	TFF 4VQQPSUJOH *OGPSNBUJPO
� 5IF XFJHIU�
JOH HJWFO CZ UIF QBSBNFUFS ˶ JT PG NPTU JOUFSFTU IFSF� " IJHIFS
˶ JOEJDBUFT B CJBT UPXBSET NPEFM�CBTFE EFDJTJPO WBMVFT� .PEFMT
XFSF JNQMFNFOUFE BT JO UIF PSJHJOBM QBQFS CZ %BX FU BM� 	�
�
*O MJOF XJUI QSFWJPVT TUVEJFT 	� ��
 B IZCSJE NPEFM BHBJO CFTU
FYQMBJOFE DIPJDF CFIBWJPS JO UIF QSFTFOU TBNQMF BT EFUFSNJOFE
CZ B #BZFTJBO NPEFM TFMFDUJPO QSPDFEVSF 	&YDFFEBODF 1SPCBCJM�
JUZ���� TFF 5BCMF 4�� ��
�

1MFBTF JOTFSU 'JHVSF � BCPVU IFSF
4USJBUBM QSFTZOBQUJD EPQBNJOF BOE UIF CBMBODF PG CFIBWJPSBM

DPOUSPM
*O PSEFS UP UFTU XIFUIFS TUSJBUBM QSFTZOBQUJD EPQBNJOF MFW�

FMT QSFEJDU UIF CBMBODF CFUXFFO NPEFM�GSFF BOE NPEFM�CBTFE
DIPJDF CFIBWJPS XF VTFE UIF XFJHIUJOH QBSBNFUFS ˶ 	5BCMF
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FDOPA and RPE betas: -ve correlation

Deserno et al., 2015 PNAS

To interpret these results, we turn to the finding that
several types of learning can co-exist, and be expressed at
different times. In rats, lesions of different parts of the pre-
frontal cortex can reveal ‘‘latent’’ habitually learned
responses when goal-directed decisions are normally
expressed [Killcross and Coutureau, 2003]. In this article,
the use of PEs is explicitly motivated by their neurobiolog-
ical face value in terms of DA phasic responses [Pessi-
glione et al., 2006; Schultz et al., 1997]. However, such
iterative PE learning forfeits much of the intricate structure
of reversal learning tasks (for instance Hidden Markov
Models; e.g. [Hampton et al., 2006]. As such, the BOLD
correlates of PE learning we observe is best taken as an
index of PE learning that is ongoing even though it may
not be fully expressed (and thus not be correlated with be-
havioral fit). Thus, subjects with higher fluid IQ show a
higher subcortical, ongoing, RW learning even when this
is not in charge. This suggests an interpretation whereby
high fluid IQ subjects show a more varied, multifaceted
approach to learning: rather than only exploiting one as-
pect of the reinforcement feedback, they exploit multiple
interpretations of reinforcements, possibly allowing for
more flexible future deployment of a larger variety of be-
havioral strategies. Our data point to VS PE signals as one
key ingredient of such fluid flexibility.

The PE signal closely matches the temporal properties of
a phasic dopamine response [Schultz et al., 1997] and
appears to be modulated by dopamine agonists [Pessi-
glione et al., 2006]. While acute striatal dopamine release

correlated with functional activation of the substantia
nigra/ventral tegmental area during reward anticipation
[Schott et al., 2008], it has to date not been explored
whether individual differences in dopaminergic neuro-
transmission as assessed in vivo with PET are directly
correlated with the PE related BOLD response [O’Doherty,
2004]. Like functional activation during reward
anticipation, the PE signal may well be triggered by phasic
alterations in firing rates of dopaminergic neurons and
their respective effect on striatal neurotransmission
[Pessiglione et al., 2006], while the magnitude of dopamine
synthesis capacity Kapp

in likely reflects the local parenchymal
brain capacity to form [18F]fluorodopamine from plasma
FDOPA, and to retain that product within vesicles, mainly
located in dopaminergic nerve terminals. FDOPA Kapp

in is
thus widely accepted as a surrogate marker for the activity
of DOPA-decarboxylase and is interpreted as an index of
dopamine synthesis capacity [Kumakura and Cumming,
2009]. Studies in Parkinson’ disease patients with a loss of
nigrostriatal nerve terminals found reduced FDOPA K

app
in

[Kumakura and Cumming, 2009] and therefore this macro-
parameter may reflect the density of dopaminergic innerva-
tions [Pate et al., 1993]. Therefore, one may have expected
to find a positive correlation between VS PE signaling and
dopamine synthesis capacity.

Indeed, dopamine depletion via blockade of synthesis
reduces electrically evoked dopamine release [Venton
et al., 2006]; however, such a rather profound stimulation
of dopamine release rapidly depletes presynaptic

Figure 3.
Negative correlation between dopamine synthesis capacity as
assessed in vivo with FDOPA PET and the BOLD prediction
error signal in the ventral striatum. Left panel: Voxel-by-voxel
association between FDOPA Kappin and BOLD prediction error
signal from the Biological Parametric Mapping analysis. Coronal
slice at MNI coordinate y 12, statistical threshold t [ 3.0, mini-

mum cluster size 20 voxels). Right panel: Plot of z-standardized
mean Kapp

in value derived from the right VS VOI and mean BOLD
prediction error signal derived from the right ventral striatal
VOI. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

r Prediction Error, Dopamine, and Fluid Intelligence r

r 7 r
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No shift in at-risk drinking

Nebe et al., 2017 Addiction

Model-based fMRI analyses are based on 146 subjects.
Neuroradiologists screened each T1-weighted MPRAGE
image for anatomical findings leading to exclusion of five
participants. Additionally, participants were excluded
because of missing field maps (n = 3), ghost artifacts in
EPI after preprocessing (n = 4), non-remediable failure
of coregistration (n = 2) or normalization (n = 7) and
extensive motion during fMRI (n = 21; >3 mm
translation or 3° rotation volume-to-volume) resulting
in a sample size of n = 146 for fMRI analyses. We
computed RPEs for each participant. RPEs are non-zero
at the onsets of second-stage and outcome presentation
(Daw et al. 2011). Therefore, we modeled BOLD signals
at these timepoints by two parametric modulators
obtained from the computational model. MF RPE (RPEMF)
and MB RPE time series were derived for both timepoints
under the assumption of fully MF (ω = 0) and fully MB
(ω = 1) control, respectively. To capture unique trial-
variance in RPEs associated with the MB but not the

MF system, we used the difference between MF and MB
RPEs (RPEΔMB) as regressor. At the second stage, there
is no further transition to another stage, and MB learning
reduces to pure MF learning. That is why RPEΔMB is zero
at outcome presentation. We set up individual fMRI
statistics according to Daw et al. (2011; see SSM2.1 for
details). For repetition of their analyses, we validated
the task setup with region of interest (ROI) analyses in
anatomically defined masks of bilateral vS and vmPFC
(SM2.2 and Fig. S2); reported activations were deemed
significant at P FWE < .05 for the peak voxel. To test our
hypotheses that neural correlates of MF and MB control
are associated with alcohol consumption, mean activa-
tion in the same ROIs were correlated with measures of
drinking behavior (trading-off spatial resolution to reduce
the number of tests performed). Additionally, exploratory
whole-brain analyses were performed to test for associa-
tions outside the a priori defined ROIs. For these analyses,
statistical thresholds were set to P uncorr. < .001, k ≥ 50,

Table 2 Demographic information, descriptive statistics of measures of goal-directed/habitual control and alcohol consumption of
participants included in analyses (n = 188; see Table S1 for these data of the complete sample).

n Min First quartile Median Third quartile Max

Descriptive statistics of sample
Age 188 18.07 18.24 18.33 18.50 18.93
Years in school 187 4 11 12 12 15

Measures of goal-directed/habitual control
ωa 188 0.00 0.20 0.59 0.80 1.00
MFscore 188 !0.42 !0.04 0.08 0.21 0.85
MBscore 188 !0.34 0.06 0.24 0.49 1.21

Measures of alcohol consumption
CIDI measures

Drinkscore 188 !8.21 !3.54 !0.35 1.61 17.52
Age of first drinka 188 9 14 14 15 18
Age of first time drunka 180 10 15 16 17 18
Estimated alcohol consumption in past year (g/day) a 188 0.00 3.21 6.43 15.43 112.50
Alcohol consumption in past year (g/drinking occasion)a 188 18 45 54 90 342
Age of first binge-drinking episodea 131 14 16 16 17 18
Number of binge-drinking episodes lifetimea 131 1 4 10 20 150
Alcohol consumption per binge-drinking episode (g)a 139 63 90 117 135 450

Questionnaire measures
ADS sum scorea 181 0 2 4 7 30
OCDS-G sum Scorea 183 0 1 3 5 18

Blood markers
AST (μKat/l)a 183 0.17 0.35 0.40 0.48 2.51
ALT (μKat/l)a 182 0.11 0.27 0.35 0.45 1.59
γ-GT (μKat/l)a 183 0.13 0.23 0.27 0.33 0.89
PEtha 158 10 10 60 60 1180

Measures of impulsivity
BIS-15 sum score 185 18 27 30 34 45
SURPS Impulsivitya 186 5 9 10 11 17

aExact Kolmogorov–Smirnov test implied non-normal distribution of this measure (P < .05). Note: n occasionally differs from 188 (or 139 in binge
drinking-relatedmeasures, respectively) due to singlemissing data points. ADS =Alcohol Dependence Scale; ALT = alanine transaminase; AST = aspartate
transaminase; BIS-15 = Barratt Impulsiveness Scale (short form); Drinkscore = score of drinking behavior from CIDI measures of alcohol consumption;
γ-GT = gamma-glutamyl transferase; MBscore = score of model-based control; MFscore = score of model-free control; OCDS-G = Obsessive Compulsive
Drinking Scale; ω = balance between model-free and model-based control; PEth = phosphatidylethanol; SURPS = Substance Use Risk Profile Scale.
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this, these analyses yielded a significant negative associa-
tion of γ-GT with MBscore (Spearman’s ρ = !.160,
P = .031; Table 3). However, this finding did not survive
Bonferroni correction for multiple comparisons (42 tests).
No further correlation on the behavioral level reached
significance (all Ps > .168).

Since binge drinkers and non-bingers can be seen
as meaningful subgroups in this sample showing

numerous differences in drinking behavior (Table S5),
we compared the measures of goal-directed/habitual
control between these groups using Exact Mann–
Whitney U-test. These analyses yielded no significant
differences between binge drinkers and non-bingers
with regard to ω, MFscore or MBscore (all Ps > .125;
Table S5). In addition, we compared measures of goal-
directed/habitual control between the four-risk groups

Table 3 Results of correlations between measures of alcohol consumption and behavioral measures of goal-directed/habitual control,
mean extracted ROI BOLD responses to RPEMF and RPEΔMB and measures of impulsivity.

ω MFscore MBscore RPEMF RPEΔMB BIS-15 SURPS

vS vmPFC vS vmPFC SUM IMP

Drinkscore !.067 .000 !.004 !.019 .014 !.058 !.023 .256*** .246***
Age of first drink !.011 .042 .057 !.184* !.143 !.063 !.008 !.125 !.263***
Age of first time drunk .066 .052 .048 !.044 !.011 !.040 .059 !.182* !.155*
Estimated alcohol consumption
in past year (g/day)

!.070 !.071 .038 !.101 .021 !.105 !.048 .088 .116

Alcohol consumption in past year
(g/drinking occasion)

!.026 !.081 .101 !.087 !.006 !.038 !.018 .133 .081

Age of first binge-drinking episode .098 !.033 .019 .075 .040 .076 .047 !.156 !.126
Number of binge-drinking
episodes lifetime

!.033 .038 .044 .001 .047 !.090 !.035 .232** .179*

Alcohol consumption per
binge-drinking episode (g)

!.064 .096 !.018 !.015 .048 .035 .059 .210** .245***

ADS sum score !.061 .007 .029 .006 .115 !.040 !.099 .211** .298***
OCDS-G sum score .000 !.011 .031 .088 .182* .021 .073 .223** .228**
AST .015 .015 !.047 !.025 .059 !.008 !.042 .039 .165*
ALT !.072 .061 !.080 .003 .029 .010 .030 !.018 .159*
γ-GT !.066 !.011 !.160* !.074 !.089 !.075 !.005 !.205** !.092
PEth .041 !.048 .052 !.091 !.016 !.019 .005 !.150 .005

*P < .05; **P < .01; ***P < .001 (two-tailed). Note: All correlations are Spearman’s ρ. ADS = Alcohol Dependence Scale; ALT = alanine transaminase;
AST = aspartate transaminase; BIS-15 = Barratt Impulsiveness Scale (short form) with SUM, Sum score; Drinkscore = score of drinking behavior from
CIDI measures of alcohol consumption; γ-GT = gamma-glutamyl transferase; MBscore = score of model-based control; MFscore = score of model-free
control; OCDS-G = Obsessive Compulsive Drinking Scale; ω = balance between model-free and model-based control; PEth = phosphatidylethanol;
SURPS = Substance Use Risk Profile Scale with IMP, Impulsivity subscale; vS = ventral striatum; vmPFC = ventromedial prefrontal cortex.

Figure 2 Scatterplots of Drinkscore with the three measures of goal-directed/habitual control: the score for model-free (MFscore) and
model-based (MBscore) choice behavior stay probabilities and the balance parameter from the hybrid-controller computational model (ω). Note
that for displaying purposes and better interpretability, ω is used instead of ωlog, but this does not influence the rank–order correlation
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choices because model-free versus model-based decision
making is differentially affected by reward and transition from
the previous trial (39) (Figure 1B). We calculated individual
model-based scores, as done previously (9), which reflect the
interaction between transition frequency and reward of the
previous trial (% reward common 1 % unrewarded rare – %
rewarded rare – % unrewarded common). Model 1A involved a
multinomial logistic regression analysis (multinom function
from the nnet package [version 7.3-8] in R software [available
at https://www.R-project.org]) to test whether group (dummy
coded with three levels: HCs, abstainers, and relapsers) was
predicted from model-based scores.

The raw data analysis provides a direct measurement of
model-free and model-based behavior. However, it only con-
siders trial-by-trial repetition effects. Computational models
allow more comprehensive assessments, examining longer
behavioral trends. Therefore, we fitted a hybrid model as

previously described (39,50,51) to the behavior and estimated
parameters for each subject. We used an expectation maxi-
mization algorithm to find maximum a posteriori estimates.
During the fitting procedure, all subjects (HCs, abstainers,
relapsers) were treated as one group.

The hybrid model contains seven parameters, of which the
parameter u is of major interest because it determines the
balance between model-free (u = 0) and model-based (u = 1)
control.

Crucially, this seven-parameter hybrid model was the best-
fitting model for all groups (Supplemental Figure S1).
The estimation of the parameter u relies on the fact that
subjects concurrently use model-free and model-based stra-
tegies. We excluded subjects who did not use this hybrid
model as indicated by the individual log-likelihoods that did not
fit better than chance (Supplement; n in analyses = 143). Model
1B then mirrored the analysis of the first-step repetition

Figure 1. (A) An exemplary trial sequence of the two-step task. Each trial consists of two consecutive stages: participants first had to choose one of two
stimuli on a gray background. This selection then led to one of two colored second-stage options (either green or yellow). Again, subjects had to choose one
stimulus over the other. The transition from first-stage selections to the specific second stage was probabilistic: whereas one first stage option led frequently to
the green second-stage options (70%) but rarely to the yellow second-stage options (30%), the other first-stage choice was associated with frequent yellow
second-stage but rare green second-stage visits. Transition frequencies were explicitly taught during the training session with a different stimulus set. After
second-stage selection, participants were probabilistically rewarded with 0.20V or did not receive any monetary reward (0.20V superimposed by a red X).
These second-stage reward probabilities changed slowly according to Gaussian random walks with reflecting boundaries at 0.25 and 0.75 (39). In each stage,
participants had 2 seconds to perform their response. Before starting the task, participants completed a training session with a different stimulus set.
(B) Expected model-free and model-based response patterns. In pure model-free decisions, first-stage choices are repeated whenever their previous choice
led to a rewarded outcome, whereas they are not repeated whenever their previous selection did not result in reward. Thus, model-free first-stage decisions are
a mere function of reward from the previous trial. Contrary to this, model-based decisions take transition frequencies from first to second stage into account.
For instance, in a rare trial, when a first-stage selection unexpectedly leads to a certain second-stage option and this second-stage choice then leads to
reward, the best (model-based) solution to get to this rewarded second-stage choice again is to switch to the opposing first-stage choice in the next trial.
(C) Real response pattern as a function of group. All three groups showed a mixture of model-free and model-based decision making. Groups did not differ
significantly regarding their model-free or model-based choice pattern.
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Followback method (47), with relapse defined as consumption
of 60/48 g (male/female) of alcohol on any occasion. Personal
assessment included alcohol breath tests to validate self-
reports. During the follow-up period, we lost 16 patients
(15%). In two cases, we only had relapse reports from close
relatives, which we accepted for classification. Altogether, 53
patients (59%) relapsed during the follow-up period, whereas
37 (41%) remained abstinent. Demographic and clinical char-
acteristics of this sample are shown in Table 1.

Data Analysis

We investigated two questions: 1) whether the balance
between model-free and model-based control was different
between HCs and detoxified alcohol-dependent patients who

remained abstinent (abstainers) and who subsequently
relapsed (relapsers), and 2) whether the balance between
model-free and model-based control moderated the effect of
alcohol expectancies on drinking behavior. As previous studies
have overwhelmingly suggested that the two-step task has
power to detect variations in the goal-directed but not the
habitual system (7,9,48,49), we focused on individual differ-
ences in model-based control in all analyses. We tested as-
sumptions for all statistical analyses and computed
nonparametric tests when necessary.

Task-Related Group Differences

To derive individual measurements of model-based control
from behavior of the two-step task, we focused on first-stage

Table 1. Sample Characteristics of the Final Sample

Variable

Group p Values for Test Statistic

HCs (n = 96) Abstainers (n = 37) Relapsers (n = 53)

Main
Effect
Group

HCs
vs.

Abstainers

Abstainers
vs.

Relapsers

HCs
vs.

Relapsers

Gender Female: 16; male: 80 Female: 7; male: 30 Female: 6; male: 47 .56c .8c .37c .47c

Site Berlin: 56; Dresden: 40 Berlin: 24; Dresden: 13 Berlin: 28; Dresden: 25 .52c .56c .28c .61c

Mean (SD) NA Mean (SD) NA Mean (SD) NA F t t t

Demographic Variables

Education, years 11.9 (1.5) 2 10.8 (1.5) 2 10.6 (3.5) 2 ,.05a,d .2d .61d ,.05a,d

Age, years 43.6 (10.9) 0 45.7 (12.0) 0 45.2 (9.9) 0 .52b .36b .82b .38b

Income, V 1201 (686) 22 1150 (741) 0 1013 (621) 5 .22d .61d .38d .08d

Smokers, % 65 0 75 0 75 0 .33c .45c 1.0c .45c

Duration of abstinence
at fMRI, days

66.5 (280.9) 0 21.4 (11.6) 0 22.3 (12.4) 0 ,.0001a,d ,.0001a,d .80d ,.0001a,d

Clinical Characteristicse

No. of detoxifications — — 2.13 (2.06) 0 4.75 (5.03) 0 ,.05a,d — ,.05a —

Positive alcohol
expectancies

25.7 (4.6) 0 31.7 (4.4) 0 32.8 (3.9) 0 ,.0001a,d ,.0001a,d .20d ,.0001a,d

Depressive symptoms 1.9 (2.3) 1 3.9 (3.9) 0 4.2 (3.7) 0 ,.0001a,d ,.001a,d .67d ,.0001a,d

Craving 2.7 (2.8) 1 10.3 (8.2) 1 12.9 (8.4) 3 ,.0001a,d ,.0001a,d .10d ,.0001a,d

Drinking motives 29 (7) 3 44 (11) 1 48 (14) 1 ,.0001a,d ,.0001a,d .36d ,.0001a,d

Time to relapse, days — — — — 87.1 (80.0) 4 — — — —

Neuropsychological Testing

Verbal IQ 28.3 (4.6) 3 28.6 (4.3) 0 28.2 (4.8) 1 .90d .87d .73d .96d

Fluid IQ 10.7 (3.12) 0 9.9 (2.6) 1 9.1 (2.9) 0 ,.01a,b .11b .26b ,.01a,b

Working memory 7.5 (2.04) 0 6.62 (1.91) 0 6.54 (1.89) 0 ,.01a,b ,.05a,b .86b ,.01a,b

Blood Markers

AST (mKat/L) 0.45 (0.17) 28 0.69 (0.53) 5 0.71 (0.52) 11 ,.001a,d ,.05a,d .68d ,.001a,d

ALT (mKat/L) 0.43 (0.19) 28 0.88 (0.73) 5 1.08 (2.16) 11 ,.001a,d ,.01a,d .94d ,.001a,d

g-GT (mKat/L) 0.54 (0.67) 28 3.33 (6.71) 5 1.51 (1.38) 11 ,.0001a,d ,.0001a,d .91d ,.0001a,d

PEth (ng/mL) 203.24 (359.68) 16 447.85 (349.13) 16 806.15 (736.83) 31 ,.0001a,d ,.0001a,d .14d ,.0001a,d

ALT, alanine transaminase; AST, aspartate transaminase; fMRI, functional magnetic resonance imaging; g-GT, gamma-glutamyl transferase;
HC, healthy control subjects; NA, not available; PEth, phosphatidylethanol.

aSignificant difference.
bp value of linear model with group as predictor, or p value of respective contrast.
cp value of chi-square test.
dp value of Kruskal–Wallis rank sum test with group as predictor or Wilcoxon rank sum test for respective contrast.
eDetermined as follows: positive alcohol expectancies: German version of the Alcohol Expectancy Questionnaire (71); depressive symptoms:

Hospital Anxiety and Depression Scale, Subscale Depressive Symptoms (72); craving: Obsessive-Compulsive Drinking Scale (73); drinking
motives were assessed using the Drinking Motives Questionnaire, revised version (52); neuropsychological testing: verbal IQ: Mehrfachwahl
Wortschatz Test (74); fluid IQ: Digit Symbol Substitution Test (75); working memory: digit span backwards test from the Wechsler Adult
Intelligence Scale (76).
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choices because model-free versus model-based decision
making is differentially affected by reward and transition from
the previous trial (39) (Figure 1B). We calculated individual
model-based scores, as done previously (9), which reflect the
interaction between transition frequency and reward of the
previous trial (% reward common 1 % unrewarded rare – %
rewarded rare – % unrewarded common). Model 1A involved a
multinomial logistic regression analysis (multinom function
from the nnet package [version 7.3-8] in R software [available
at https://www.R-project.org]) to test whether group (dummy
coded with three levels: HCs, abstainers, and relapsers) was
predicted from model-based scores.

The raw data analysis provides a direct measurement of
model-free and model-based behavior. However, it only con-
siders trial-by-trial repetition effects. Computational models
allow more comprehensive assessments, examining longer
behavioral trends. Therefore, we fitted a hybrid model as

previously described (39,50,51) to the behavior and estimated
parameters for each subject. We used an expectation maxi-
mization algorithm to find maximum a posteriori estimates.
During the fitting procedure, all subjects (HCs, abstainers,
relapsers) were treated as one group.

The hybrid model contains seven parameters, of which the
parameter u is of major interest because it determines the
balance between model-free (u = 0) and model-based (u = 1)
control.

Crucially, this seven-parameter hybrid model was the best-
fitting model for all groups (Supplemental Figure S1).
The estimation of the parameter u relies on the fact that
subjects concurrently use model-free and model-based stra-
tegies. We excluded subjects who did not use this hybrid
model as indicated by the individual log-likelihoods that did not
fit better than chance (Supplement; n in analyses = 143). Model
1B then mirrored the analysis of the first-step repetition

Figure 1. (A) An exemplary trial sequence of the two-step task. Each trial consists of two consecutive stages: participants first had to choose one of two
stimuli on a gray background. This selection then led to one of two colored second-stage options (either green or yellow). Again, subjects had to choose one
stimulus over the other. The transition from first-stage selections to the specific second stage was probabilistic: whereas one first stage option led frequently to
the green second-stage options (70%) but rarely to the yellow second-stage options (30%), the other first-stage choice was associated with frequent yellow
second-stage but rare green second-stage visits. Transition frequencies were explicitly taught during the training session with a different stimulus set. After
second-stage selection, participants were probabilistically rewarded with 0.20V or did not receive any monetary reward (0.20V superimposed by a red X).
These second-stage reward probabilities changed slowly according to Gaussian random walks with reflecting boundaries at 0.25 and 0.75 (39). In each stage,
participants had 2 seconds to perform their response. Before starting the task, participants completed a training session with a different stimulus set.
(B) Expected model-free and model-based response patterns. In pure model-free decisions, first-stage choices are repeated whenever their previous choice
led to a rewarded outcome, whereas they are not repeated whenever their previous selection did not result in reward. Thus, model-free first-stage decisions are
a mere function of reward from the previous trial. Contrary to this, model-based decisions take transition frequencies from first to second stage into account.
For instance, in a rare trial, when a first-stage selection unexpectedly leads to a certain second-stage option and this second-stage choice then leads to
reward, the best (model-based) solution to get to this rewarded second-stage choice again is to switch to the opposing first-stage choice in the next trial.
(C) Real response pattern as a function of group. All three groups showed a mixture of model-free and model-based decision making. Groups did not differ
significantly regarding their model-free or model-based choice pattern.
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stimulus over the other. The transition from first-stage selections to the specific second stage was probabilistic: whereas one first stage option led frequently to
the green second-stage options (70%) but rarely to the yellow second-stage options (30%), the other first-stage choice was associated with frequent yellow
second-stage but rare green second-stage visits. Transition frequencies were explicitly taught during the training session with a different stimulus set. After
second-stage selection, participants were probabilistically rewarded with 0.20V or did not receive any monetary reward (0.20V superimposed by a red X).
These second-stage reward probabilities changed slowly according to Gaussian random walks with reflecting boundaries at 0.25 and 0.75 (39). In each stage,
participants had 2 seconds to perform their response. Before starting the task, participants completed a training session with a different stimulus set.
(B) Expected model-free and model-based response patterns. In pure model-free decisions, first-stage choices are repeated whenever their previous choice
led to a rewarded outcome, whereas they are not repeated whenever their previous selection did not result in reward. Thus, model-free first-stage decisions are
a mere function of reward from the previous trial. Contrary to this, model-based decisions take transition frequencies from first to second stage into account.
For instance, in a rare trial, when a first-stage selection unexpectedly leads to a certain second-stage option and this second-stage choice then leads to
reward, the best (model-based) solution to get to this rewarded second-stage choice again is to switch to the opposing first-stage choice in the next trial.
(C) Real response pattern as a function of group. All three groups showed a mixture of model-free and model-based decision making. Groups did not differ
significantly regarding their model-free or model-based choice pattern.
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across a range of expectancy subthemes; it subsumes the 
original six positive AEQ factors, thus retaining some com- 
parability with the numerous AEQ studies; and it includes 
negative as well as positive factors. Additional advantages of 
the AEQ-3 are that the distributional properties and reliabil- 
ities of the subscales are strong; the correlated eight-factor 
structure has been confirmed (though the fit is still less than 
adequate); the factor structure has been shown to be largely 
invariant across race and gender, and the AEQ-3 is general- 
Jzable across a broader population than previously demon- 
strated. Concerns about the discriminant validity of the 
subscales remain unresolved and require further research 
(e.g., Frone et al., 1993b). 

Appendix 

1. Drinking makes me feel warm and flushed. 
2. Alcohol lowers muscle tension in my body. 
3. A few drinks make me feel less shy. 
4. Alcohol helps me to fall asleep more easily. 
5. I feel powerful when I drink, as if I can really make other peo- 

ple do as I want. 
6. I'm more clumsy after a few drinks. 
7. I am more romantic when I drink. 
8. Drinking makes the future seem brighter to me. 
9. If I have had a couple of drinks, it is easier for me to tell some- 

one off. 
10. I can't act as quickly when I've been drinking. 
11. Alcohol can act as an anesthetic for me, that is, it can stop pain. 
12. I often feel sexier after I've had a few drinks. 
13. Drinking makes me feel good. 
14. Alcohol makes me careless about my actions. 
15. Some alcohol has a pleasant, cleansing, tingly taste to me. 
16. Drinking makes me more aggressive. 
17. Alcohol seems like magic to me. 
18. Alcohol makes it hard for me to concentrate. 
19. I'm a better lover after a few drinks. 
20. When I'm drinking, it is easier to open up and express my feel- 

ings. 
21. Drinking adds a certain warmth and friendliness to social oc- 

casions for me. 
22. If I'm feeling tied down or frustrated, a few drinks make me 

feel better. 
23. I can't think as quickly after I drink. 
24. Having a few drinks is a nice way for me to celebrate special 

occasions. 
25. Alcohol makes me worry less. 
26. Drinking makes me less efficient. 
27. Drinking is pleasurable because it's enjoyable for me to join in 

with people who are enjoying themselves. 
28. After a few drinks, I am more sexually responsive, that is, more 

in the mood for sex. 
29. I feel more physically coordinated after I drink. 
30. I'm more likely to say embarrassing things after drinking. 
31. I enjoy having sex more if I've had some alcohol. 
32. I'm more likely to get into an argument if I've had some alco- 

hol. 
33. Alcohol makes me less worried about doing things well. 
34. Alcohol helps me sleep better. 
35. Drinking gives me more confidence in myself. 
36. Alcohol makes me more irresponsible. 
37. After a few drinks it is easier for me to pick a fight. 
38. A few drinks make it easier for me to talk to people. 

39. If I have a couple of drinks, it is easier to express my feelings. 
40. Alcohol makes me more interesting. 

Notes 

1. Both Brown et al. (1980) and Rohsenow (1983) used the acronym AEQ 
to refer to their respective instruments. We will use AEQ to refer to 
Brown et al.'s Alcohol Expectancy Questionnaire, AEQ-2 to refer to 
Rohsenow's Alcohol Effects Questionnaire and AEQ-3 to refer to the 
currently revised AEQ-2. 

2. One item loaded on two separate factors. The item "If I'm feeling re- 
stricted in any way, a few drinks make me feel better" (Item 22 in 
AEQ-3) loaded on both the Global Positive and Power and Aggression 
subscales. For the present confirmatory factor analyses, we allowed this 
item to load only on the Global Positive subscale. 

3. Between Wave 1 and Wave 2, 318 subjects were lost to attrition. These 
attrition subjects were not different from reinterviewed subjects with re- 
spect to gender distribution, race distribution, Wave I average drinks per 
day in the past year and Wave I expectancy scale scores. However, on 
average, the attrition subjects were older (F = 31.51, 1/1,575 df, p < 
.001) and less educated (F -- 13.75, 1/1,574 df, p < .001) than reinter- 
viewed subjects. Although statistically significant, the effect sizes were 
small for both education (12.98 vs 12.42 years; •12 = .009) and age (45.80 
vs 40.16 years; '13 2 = .020). 

4. There are two other differences between the present study and Leigh's 
study that may have affected the differences in fit. The AEQ-3 had eight 
factors rather than six and there were fewer indicators for each latent vari- 
able in the AEQ-3 than in the AEQ. To examine the influence of the num- 
ber of factors, the overall fit indices were computed for a model 
containing only the six positive expectancy factors. The fit of this model 
(NFI = .869, CFI = .881, RMSR -- .04) was virtually identical to the fit 
of the eight-factor model (NFI = .860, CFI = .876, RMSR = .05). Thus, 
number of factors does not explain this study' s improvement in fit rela- 
tive to Leigh' s study. Nonetheless, the difference in the number of items 
is still a plausible alternative explanation. 

5. To evaluate this impression of there being superordinate positive and 
negative factors, we attempted to conduct a higher order factor analysis. 
However, the model was under identified because the second-order neg- 
ative expectancy factor had only two first-order indicators. At least three 
indicators are needed to identify a factor (first- or second-order). As an 
indication of under identification, we obtained a negative error variance 
(Heywood case) for one of the first-order indicators of the second-order 
negative expectancy factor. In addition, the standard error for the nega- 
tive error variance revealed that it was significantly different from zero, 
thereby ruling out the possibility that it was due to sampling fluctuation. 
In sum, a higher order factor analysis would have informed our subjec- 
tive impression of positive and negative superordinate factors; but it is 
impossible to estimate such a model without a third negative expectancy 
scale. 

References 

ABRAMS, D.B. AND N1AURA, R.S. Social learning theory. In: BLANE, H.T. 
AND LEONARD, K.E. (Eds.) Psychological Theories of Drinking and Al- 
coholism, New York: Guilford Press, 1987, pp. 131-178. 

BENTLER, P.M. EQS Structural Equations Program Manual, Los Angeles: 
BMDP Statistical Software, 1989. 

BENTLER, P.M. AND BONETT, D.G. Significance tests and goodness of fit 
in the analysis of covariance structures. Psychol. Bull. 88: 588-606, 
1980. 

BOLLEN, K.A. Structural Equations with Latent Variables, New York: John 
Wiley & Sous, Inc., 1989. 

BROWN, S.A. Context of drinking and reinforcement from alcohol: Alco- 
holic patterns. Addict. Behav. 10:191-195, 1985a. 

Motivational interviewing



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

Alcohol expectancies

Sebold et al., 2017 Biol. Psychiatry

184 JOURNAL OF STUDIES ON ALCOHOL / MARCH 1995 

across a range of expectancy subthemes; it subsumes the 
original six positive AEQ factors, thus retaining some com- 
parability with the numerous AEQ studies; and it includes 
negative as well as positive factors. Additional advantages of 
the AEQ-3 are that the distributional properties and reliabil- 
ities of the subscales are strong; the correlated eight-factor 
structure has been confirmed (though the fit is still less than 
adequate); the factor structure has been shown to be largely 
invariant across race and gender, and the AEQ-3 is general- 
Jzable across a broader population than previously demon- 
strated. Concerns about the discriminant validity of the 
subscales remain unresolved and require further research 
(e.g., Frone et al., 1993b). 
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between relapsers and abstainers (p = .06). Post hoc analyses
using Spearman correlation to associate AEQ scores with
model-based control indicated a positive association in HCs
(r = .2, p = .04) which was absent in abstainers (p = .36,
Figure 2A) and negative in relapsers (r = 2.3, p = .03). Model
comparisons between models 1A and 2A indicated that model
2A, which included the interaction between the model-based
term and AEQ scores to predict group membership, out-
performed model 1A, which included only the model-based
term (c2 = 87.1, p , .001). To ensure the robustness of our
analysis in a predictive classification scheme, we ran the lo-
gistic regression model in a cross-validated procedure. The
regression model correctly predicted group membership with
an area under the curve of 0.77 (chance level: 0.5; p , 1024

based on a permutation test with 10,000 label permutations),
corroborating the significant predictive capacity of model 2A.

Similar to our raw data analysis, model 2B indicated a sig-
nificant interaction between u and AEQ scores (R2

McF = .12,
p = .01), which was significantly different between relapsers
and HCs (b = 1.48, p , .01) and did not reach significance
between relapsers and abstainers (b = 1.8, p = .1). Again,
model 2B outperformed model 1B, which only included the
parameter u (c2 = 10.2, p = .03).

Post hoc analyses comparing high and low AEQ individuals
revealed a positive association between AEQ scores and u in
HCs (p, .01), but no significant association between AEQ and
u in abstainers (p = .51) and a trend toward negative associ-
ation between AEQ and u in relapsers (p = .05, Figure 2C).
Adding site as a potential covariate did not change any of
these results. Repeating our analyses with time to relapse as
dependent variable did not reach significance (Supplement).

Among all subjects, AEQ scores were positively corre-
lated with a variety of drinking motives (Supplemental
Figures S3 and S4).

fMRI Results

Across all groups and in line with previous work (39,50,51), the
conjunction between RPEMF and RPEDMB reached significance
in the bilateral VS (t = 6.38, x = 12, y = 12, z = –8 and t = 6.27,
x = –16, y = 8, z = –10, pFWE , .001) and the mPFC (t = 4.85,
x = –8, y = 32, z = –8, pFWE , .05) (Figure 3A; Supplemental
Table S3). Within these regions, we found a significant corre-
lation between neural model-based signatures (average cluster
activation) and model-based scores in HCs (right VS: r = .29,
p = .02; mPFC: r = .27, p = .03) (Figure 3B).

With regard to group comparisons, HCs did not differ from
alcohol-dependent patients. However, with regard to treatment
outcome, we observed significantly lower model-based pre-
diction error signals (RPEDMB) in the mPFC for relapsers
compared to abstainers and HCs (t = 3.9; x = –16, y = 42, z =
–8, pFWE_SVC = .026) (Figure 3C). Post hoc analyses, for which
we extracted estimates from the peak voxel in the mPFC and
compared activation between groups, indicated significantly
higher activation in HCs compared to relapsers (t = 3.47, p,
.001) and trendwise higher activation in HCs compared to
abstainers (t = 1.74, p = .08). Abstainers and relapsers did not
differ (p = .10). Crucially, adding individual gray matter den-
sities of the mPFC did not change these results (pFWE_SVC =
.024), suggesting that reduced neural signatures of model-
based RPEs in relapsers were not caused by gray matter at-
rophy (Supplemental Table S2).

Model-free neural signatures did not differ between groups
(Supplemental Figure S5).

Mirroring our behavioral analyses, we also examined
whether AEQ scores interacted with neural correlates of
model-based control in predicting group. However, the inter-
action between neural correlates of model-based control and
AEQ scores was not significantly different between groups,

Figure 2. (A, B) Model-based strategy usage as a function of alcohol expectancies. Subsequent relapsers showed a negative relationship between alcohol
expectancies and model-based control. This negative association was not apparent in the abstaining patients and positive in the healthy control subjects. (C)
The relationship between u, which indicates the balance between model-based and model-free decision making, and positive alcohol expectancies. Again,
whereas healthy control subjects showed a positive association between u and alcohol expectancies, this association was negative in relapsers and absent in
abstaining patients.

Alcohol Expectancies and Decision Making Predict Relapse

852 Biological Psychiatry December 1, 2017; 82:847–856 www.sobp.org/journal

Biological
Psychiatry
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Pavlovian state values: sign tracking

Flagel et al., 2011 Nature
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Goal-tracking in humans?

Schad et al., in prep

ST: learn expected value V

GT: learn mappings T from CS to US identity

V(s) =
X

a

⇡(a; s)
X

s0

T (s0|s, a)[R(s0, a, s) + V(s0)]
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Pavlovian learning in ST vs GT

Vt(s) = Vt�1(s) + ↵r �rt
�rt = rt � Vt�1(s)

Tt(cs, us) = Tt�1(cs, us) + ↵s �st
�st = 1� Tt�1(cs, us)
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Goal-tracking signatures

Schad et al., in prep, Gläscher et al. 2010 Neuron

Gaze

Pupil

effects visible in Figure 3A (e.g., inferior temporal gyrus) did not
meet our statistical threshold for whole-brain correction and
are not further discussed. The graphs show the average percent
signal change (PSC) in BOLD activation across subjects for both
prediction error signals on trials in which that error signal was
low, medium, or high (bins defined at 33rd, 66th, and 100th

percentile, see Experimental Procedures for details). This reveals
a linear increase in BOLD activation across trials with increasing
SPEs, except for the left IPS, in which the increase in BOLD
activation occurs only for trials with the highest SPE. In contrast,
there is no such systematic relationship between BOLD activa-
tion and the RPE.

Conversely, when we tested for a correlation between BOLD
activation and the RPE, we found a significant effect in the vStr
(Figure 3C), consistent with previous accounts (McClure et al.,
2003; O’Doherty et al., 2003), but no effects for an SPE even at
p < 0.001 uncorrected. The graph of the average PSC across
subjects in this region shows the opposite pattern from that in
the pIPS and latPFC: a linear increase in BOLD activity across
trials with increasing RPE, but no such increase for the SPE.

In a follow-up analysis, to investigate the consistency of SPE
results between the sessions, we identified the peak voxels for

Figure 3. Neural Representations of State
Prediction Errors and Reward Prediction
Errors
The SPE is pooled across both scanning sessions,

whereas the RPE is only available in the rewarded

session 2. BOLD activation plots on the right are

the average percent signal change (across

subjects, error bars = SEM) for those trials in which

the prediction error (PE) is low, medium, or high

(33rd, 66th, and 100th percentile PE range). Data

are extracted using a cross-validation procedure

(leave-one-out) from the nearest local maximum

from the coordinates listed in the Table 2 (circled

areas, see Experimental Procedures for details).

Red = SPE, green = RPE. (A and B) Significant

effect for SPE bilaterally in the intraparietal sulcus

(ips) and lateral prefrontal cortex (lpfc). (C) Signifi-

cant effects for RPE in the ventral striatum (vstr).

Color codes in the SPMs correspond to p <

0.001 and p < 0.0001 uncorrected.

the SPE signal in session 2 only, and
then tested for a significant SPE re-
presentation in session 1 in a reduced
spherical search volume (radius: 10 mm,
p < 0.05, family-wise error [FWE] correc-
tion for search volume). This procedure
ensures that the centers for the search
volumes are selected in a way that is
independent of the data in session 1.
We found significant effects of SPE in
session 1 bilaterally in latPFC and in the
right pIPS/angular gyrus (Figure 4), con-
firming that these areas correlate with
an SPE even in the absence of any reward
information (see Table 2). To test for

overlapping voxels with SPE representations in both sessions,
we employed a conjunction analysis (Nichols et al., 2005) and
found evidence that voxels in these regions were activated in
both sessions at p < 0.001 uncorrected.

Relationship between Neural SPE Signal and Behavior
We next considered whether this neural correlate of an SPE is
also behaviorally relevant for making better choices at the begin-
ning of the free-choice session. To address this question, we
correlated in each participant the parameter estimate for the
SPE in those regions possessing a significant SPE representa-
tion in session 1 (bilateral latPFC and right pIPS, extracted and
averaged from a 10 mm spherical volume centered on the group
peak voxel) with the percent correct choices. The latter is
a behavioral measure defined as the choice of the action with
the highest expected value (reward magnitude 3 true transition
probability) (see Figure S1), and is independent of the computa-
tional models employed for the imaging analysis. We observed
a significant correlation between the neural and the behavioral
data of r = 0.57 (p = 0.013) in the right pIPS, but not in latPFC
(left: r = 0.28, p = 0.27; right; r = 0.38, p = 0.12). This suggests
that the degree to which pIPS encodes an SPE representation

Neuron
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Double dissociation between ST and GT

Schad et al., in prep
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Pavlovian vs Instrumental paradigms

Huys et al., 2014 Prog Neurobiol

That is, it is possible to use a model (T and R) to evaluate the expected reward of
performing an action in a state, or the expected reward of being in a state (i.e., col-
lapsing over possible actions).

Instrumental versus Pavlovian: The model-free/model-based distinction is inde-
pendent of the instrumental/Pavlovian distinction (Table 1). In instrumental learning,
subjects are reinforced for a stimulus–response combination, which is modeled using
state-action values Q s, að Þ. In Pavlovian conditioning experiments, stimuli are pre-
dictive of reward irrespective of the actions emitted by the subjects. These stimulus-
bound expectations are modeled using state values V sð Þ. Clearly, the latter begs the
question of how and why stimulus values elicit actions at all, and we will return to
this below. However, we emphasize both model-based and model-free approaches
can, in principle, be applied to either instrumental or Pavlovian scenarios. In other
words, there can be both cached, model-free Pavlovian values VMF sð Þ and instrumen-
tal values QMF s, að Þ and model-based Pavlovian values VMB sð Þ and instrumental
values QMB s, að Þ.

3 PHASIC DOPAMINE SIGNALS REPRESENT MODEL-FREE
PREDICTION ERRORS
The neural bases of model-based learning are not very clear, with only few direct
measurements of tree search available ( Johnson and Redish, 2007; Pfeiffer and
Foster, 2013; van der Meer and Redish, 2009). However, the neural representation
of prediction-error signals as required for model-free learning has been examined in
exacting detail (Montague et al., 1996; Schultz et al., 1997), and we turn to this
evidence next. It focuses on the dopamine neurons of the ventral tegmental area
(VTA) and, in a nutshell, suggests that dopamine neurons code some form of the
d term described earlier.

Dopaminergic involvement in reward learning has been studied with recordings
of the electrical activity of single neurons, voltammetry (Day et al., 2007) and neu-
roimaging in rodents, macaques, and humans. In now classical experiments (for re-
views, e.g., Daw and Tobler, 2013; Glimcher, 2011; Schultz, 1998, 2013),
dopamine neurons were found to respond with a burst of action potentials (duration
and latency of roughly 100 ms) to rewards such as small pieces of food hidden in a
box or to drops of cordial delivered through a spout. While rewards typically

Table 1 Types of values

Model-free Model-based

Pavlovian (state) values VMF sð Þ VMB sð Þ
Instrumental (state-action) values QMF s, að Þ QMB s, að Þ

There are both Pavlovian state and instrumental state-action values, and both of these can be either
model-free (cached) or model-based.

393 Phasic dopamine signals represent model-free prediction errors

Stimulus reward

rewardStimulus action

V(s)

Q(s, a)
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Pavlovian-Instrumental transfer

V(s)Q(s, a)

Q(s, a) + V(s)Q(s, a) + V(s) if natural

Q(s, a) else
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“Pavlovian” unconditioned responses

Hershberger 1986
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“Pavlovian” unconditioned responses

Hershberger 1986

•powerful

•inflexible over short 
timescale

•adaptive on evolutionary 
scale
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Innate evolutionary strategies

Hirsch and Bolles 1980 Ethology
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PIT paradigms

‣ Separate  

‣ Joint?

Pavlovian 

conditioning

Instrumental

conditioning

Instrumental

performance

in extinction


w/ Pavlovian stimuli
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Go Nogo

Rewarded

Avoids loss

Affective go / nogo task

Guitart-Masip, Huys et al. 2012
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Models

Guitart et al., 2012 J Neurosci

‣ Basic
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‣ Basic + bias
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‣ Basic + bias + Pavlovian influence
pt(go|s) / Qt(s, go) + bias(go) + ⇡Vt(s)

pt(nogo|s) / Qt(s, nogo)

Qt+1(s, a) = Qt(s, a) + ↵(rt �Qt(s, a))

Vt+1(s) = Vt(s) + ↵(rt � Vt(s))

Models

                                               

Go rewarded
Go to win

Pr
ob

ab
ilit

y(
G

o)

20 40 60
0

0.5

1

Nogo punished
Go to avoid

20 40 60
0

0.5

1

Nogo rewarded
Nogo to win

20 40 60
0

0.5

1

Go punished
Nogo to avoid

20 40 60
0

0.5

1

Go Nogo

Rewarded

Avoids loss



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

‣ Basic + bias + Pavlovian influence
pt(go|s) / Qt(s, go) + bias(go) + ⇡Vt(s)

pt(nogo|s) / Qt(s, nogo)

Qt+1(s, a) = Qt(s, a) + ↵(rt �Qt(s, a))

Vt+1(s) = Vt(s) + ↵(rt � Vt(s))

Models

                                               

Go rewarded
Go to win

Pr
ob

ab
ilit

y(
G

o)

20 40 60
0

0.5

1

Nogo punished
Go to avoid

20 40 60
0

0.5

1

Nogo rewarded
Nogo to win

20 40 60
0

0.5

1

Go punished
Nogo to avoid

20 40 60
0

0.5

1

Go Nogo

Rewarded

Avoids loss



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

‣ Basic + bias + Pavlovian influence
pt(go|s) / Qt(s, go) + bias(go) + ⇡Vt(s)

pt(nogo|s) / Qt(s, nogo)

Qt+1(s, a) = Qt(s, a) + ↵(rt �Qt(s, a))

Vt+1(s) = Vt(s) + ↵(rt � Vt(s))

Models

                                               

Go rewarded
Go to win

Pr
ob

ab
ilit

y(
G

o)

20 40 60
0

0.5

1

Nogo punished
Go to avoid

20 40 60
0

0.5

1

Nogo rewarded
Nogo to win

20 40 60
0

0.5

1

Go punished
Nogo to avoid

20 40 60
0

0.5

1

Go Nogo

Rewarded

Avoids loss



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

Model comparison: overfitting?
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Example code

‣ www.cmod4mh.org/emfit.zip 

‣ batchRunEMfit(‘mAffectiveGoNogo’) 
• will generate example data 
• fit all models in modelList.m 
• perform model comparison 
• generate surrogate data 
• generate plots for basic sanity checks 

‣ final model is llbaepxb.m

http://www.cmod4mh.org/emfit.zip
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Threat of shock

Mkrtchian et al., 2017 Biol. Psychiatry

trials. For one model (standard 1 2 approach-avoid – 1 sense)
there was only one sensitivity parameter per subject, thus
assuming that failure to obtain a reward was as aversive as
obtaining a punishment. The initial value for the go action was
set to zero, and the action weight was modified to include a
static general action bias parameter, which denoted overall go
tendency (with the exception of one model [standard – action
bias] in which this was not included). The pavlovian approach-
avoid bias parameter (excluded for one model [standard –

approach-avoid]) inhibited the tendency to go in proportion to
the negative value of the punishment stimulus, while it similarly
promoted the tendency to go in proportion to the positive

value of the reward stimulus. For the model with two
approach-avoid parameters (standard 1 2 approach-avoid),
there were two parameters, updated separately for rewarded
and punished trials. For the models with two learning rates
(standard 1 2 approach-avoid 1 2 learning rates or standard
1 2 learning rates), there were separate learning rates for
rewarded and punished trials. In sum, for a given action (a 5
go or no-go), stimulus (s 5 go to win reward, GA, NGW, or no-
go to avoid losing), or reinforcement (r 5 11, –1, or 0) on each
trial t:

Qt at ;stð Þ 5 Qt21 at ;stð Þ1LearningRateU SensitivityUrtð Þ2Qt21 at ;stð Þ
! "

(1)

Figure 1. Experimental paradigm.
The trial sequence for each trial-type
condition under threat (red) and safe
(blue) conditions. There were equal num-
bers of go to win, go to avoid, no-go to
win reward, and no-go to avoid losing
trials within each safe and threat block,
and these were randomly ordered within
each block (note that safe sequence
proceeds in the same way as the threat
sequence but is curtailed here for
brevity). The prepotent pavlovian bias
to a win is a go response (approach) and
the prepotent pavlovian response to a
loss is no-go (avoid); hence in go to win
reward and no-go to avoid losing, the
bias and task instructions are aligned,
but in go to avoid losing and no-go to
win reward participants have to learn to
overcome their avoidance and approach
biases, respectively. The safe and threat
blocks were presented in alternating
order, counterbalanced across partici-
pants. A different set of fractal cues
was used for the safe and threat blocks,
counterbalanced across participants.
At feedback, a face (happy 110 points,
fear –10 points) was shown 80% of the
time, and no points (i.e., a yellow bar
[not shown in the figure]) was shown
20% of the time.

Table 1. Model Specification

Model Name NP Parameter

Standard – Action Bias 5 Reward
sensitivity

Punishment
sensitivity

Learning rate Lapse — Approach-avoid bias

Standard – Approach-Avoid 5 Reward
sensitivity

Punishment
sensitivity

Learning rate Lapse General
action bias

—

Standard 1 2 Approach-Avoid – 1
Sense

6 Sensitivity Learning rate Lapse General
action bias

Approach
bias

Avoidance
bias

Standard 6 Reward
sensitivity

Punishment
sensitivity

Learning rate Lapse General
action bias

Approach-avoid bias

Standard 1 2 Approach-Avoid 7 Reward
sensitivity

Punishment
sensitivity

Learning rate Lapse General
action bias

Approach
bias

Avoidance
bias

Standard 1 2 Learning Rates 7 Reward
sensitivity

Punishment
sensitivity

Reward
learning rate

Punishment
learning rate

Lapse General
action bias

Approach-avoid bias

Standard 1 2 Approach-Avoid 1 2
Learning Rates

8 Reward
sensitivity

Punishment
sensitivity

Reward
learning rate

Punishment
learning rate

Lapse General
action bias

Approach
bias

Avoidance
bias

NP, number of parameters.

Reinforcement Learning of Avoidance in Mood and Anxiety

534 Biological Psychiatry October 1, 2017; 82:532–539 www.sobp.org/journal

Biological
Psychiatry
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Threat potentiates aversive Pavlovian bias

in anxious individuals

Mkrtchian et al., 2017 Biol. Psychiatry

computational approach, we provide evidence that mood and
anxiety disorders are associated with increased reliance on an
avoidance bias (a pavlovian bias to withhold responding in the
face of punishments) during reinforcement learning. Moreover,
consistent with the diathesis-stress hypothesis, this effect was
exacerbated under stressful conditions in the mood and
anxiety group only.

We provide a potential computational mechanism for this
effect. We show that avoidance behavior—which is currently
measured by retrospective self-report—can emerge at the

level of stimulus-action associations. Specifically, individuals
with mood and anxiety disorders may show avoidance in the
face of threats because they inhibit their action tendencies
when faced with a perceived negative outcome. This is
consistent with prior work demonstrating increased behavioral
inhibition under stress (13,14), in pathological anxiety (15), and
in high (nonpathological) trait anxiety (22) [although see (23)].
Over time, however, individuals may be ultimately able to learn
to overcome this bias (i.e., promote instrumental override of
pavlovian bias parameters) if they are given the opportunity to

Figure 3. Model fitting and comparison. Four different population distributions were tested separated by (A) group and threat condition (four distributions);
(B) by threat condition alone (two distributions); (C) blind to group and threat condition (one distribution); and (D) by group alone (two distributions).
Comparison of models and distributions using integrated Bayesian information criteria (iBIC) scores (colors match distributions throughout figure) revealed a
winning model of standard 1 2 approach-avoid 1 2 learning rates, fit across a single prior distribution (inset zoomed in on the distribution comparison for this
model). Box-and-whisker plots of the recovered parameters from the wining model/distribution are presented in panel (F) separated by group and condition
(red triangles denote means, lines denote medians; based on individual parameter estimates). Log scales are used for the sensitivity and approach-avoidance
parameters to aid visualization of these exponentially transformed parameters. ANX, mood and anxiety group; Ap-Av, approach avoid; Approach, approach
bias; Avoid, avoidance bias; HC, healthy control group; LR, learning rate; Pun, punishment; Rew, reward; Sense, sensitivity; Stand, standard.

Figure 4. Posterior predictive model. Running the estimated parameters for each subject through a posterior predictive model recovered both (A) average
go probabilities for each trial type (sensitivity plots: each marker represents one subject under one condition so there are twice as many markers as subjects)
and (B) group-averaged trial-by-trial performance (compare to real data in Figure 2C). In panel (B) green shows healthy control group (HC) and gray shows
mood and anxiety group (ANX). Comparing parameters across group and condition revealed (C) a significantly higher avoidance bias parameter in
pathological anxiety across conditions as well as greater threat-potentiated avoidance in pathological anxiety (error bars represent SEM). Avo, avoid;
Saf, safe; Thr, threat.
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computational approach, we provide evidence that mood and
anxiety disorders are associated with increased reliance on an
avoidance bias (a pavlovian bias to withhold responding in the
face of punishments) during reinforcement learning. Moreover,
consistent with the diathesis-stress hypothesis, this effect was
exacerbated under stressful conditions in the mood and
anxiety group only.

We provide a potential computational mechanism for this
effect. We show that avoidance behavior—which is currently
measured by retrospective self-report—can emerge at the

level of stimulus-action associations. Specifically, individuals
with mood and anxiety disorders may show avoidance in the
face of threats because they inhibit their action tendencies
when faced with a perceived negative outcome. This is
consistent with prior work demonstrating increased behavioral
inhibition under stress (13,14), in pathological anxiety (15), and
in high (nonpathological) trait anxiety (22) [although see (23)].
Over time, however, individuals may be ultimately able to learn
to overcome this bias (i.e., promote instrumental override of
pavlovian bias parameters) if they are given the opportunity to

Figure 3. Model fitting and comparison. Four different population distributions were tested separated by (A) group and threat condition (four distributions);
(B) by threat condition alone (two distributions); (C) blind to group and threat condition (one distribution); and (D) by group alone (two distributions).
Comparison of models and distributions using integrated Bayesian information criteria (iBIC) scores (colors match distributions throughout figure) revealed a
winning model of standard 1 2 approach-avoid 1 2 learning rates, fit across a single prior distribution (inset zoomed in on the distribution comparison for this
model). Box-and-whisker plots of the recovered parameters from the wining model/distribution are presented in panel (F) separated by group and condition
(red triangles denote means, lines denote medians; based on individual parameter estimates). Log scales are used for the sensitivity and approach-avoidance
parameters to aid visualization of these exponentially transformed parameters. ANX, mood and anxiety group; Ap-Av, approach avoid; Approach, approach
bias; Avoid, avoidance bias; HC, healthy control group; LR, learning rate; Pun, punishment; Rew, reward; Sense, sensitivity; Stand, standard.

Figure 4. Posterior predictive model. Running the estimated parameters for each subject through a posterior predictive model recovered both (A) average
go probabilities for each trial type (sensitivity plots: each marker represents one subject under one condition so there are twice as many markers as subjects)
and (B) group-averaged trial-by-trial performance (compare to real data in Figure 2C). In panel (B) green shows healthy control group (HC) and gray shows
mood and anxiety group (ANX). Comparing parameters across group and condition revealed (C) a significantly higher avoidance bias parameter in
pathological anxiety across conditions as well as greater threat-potentiated avoidance in pathological anxiety (error bars represent SEM). Avo, avoid;
Saf, safe; Thr, threat.
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Escape vs avoidance

Millner et al., 2018 J Cog Neurosci

passive responses to obtain rewards) behaviors. The cur-
rent task has only aversive stimuli and uses active (go)
and passive (no-go) responses to test whether there
are different Pavlovian effects on action selection within
two aversive conditions: an escape condition, in which
participants learn a response to escape an ongoing aver-
sive state, and an avoid condition, in which participants
learn a response to avoid an impending aversive state.
We hypothesized that the escape condition would be as-
sociated with a Pavlovian bias for an active response,
whereas the avoid condition would be associated with a
passive (inhibitory) Pavlovian bias. Furthermore, we pre-
dicted that active responses to escape would lead to
more vigorous responses (as demonstrated by faster
RTs) compared with avoiding an impending punishment.

METHODS
Participants

Fifty-three participants completed the study. Fifty-two
participants were analyzed, as one participant was ex-
cluded for selecting go on every escape trial. Among the
remaining participants, ages ranged from 18 to 65 years
(M = 28.7 years, SD = 11.8 years), with 26 women.
Nearly half (44%) of the participants were of European
ancestry (n = 23), whereas 10% were of African ancestry

(n = 5), 29% were of Asian ancestry (n = 15), and the
remaining 17% of the participants were of mixed races
(n = 9). Participants were recruited from the Harvard
University Psychology Study Pool and were either com-
pensated with course credit or paid $12. The Harvard
University Institutional Review Board approved the study.

Experimental Paradigm

The paradigm (Figure 1) is adapted from a similar para-
digm by Guitart-Masip and colleagues (2012). In the cur-
rent paradigm, on every trial, participants were presented
with one of four cues (fractal images), followed by either
an aversive sound (“escape” condition) or silence
(“avoid” condition). The participants’ goal was to learn
which response (press a button: “go,” withhold a button
press: “no-go”) that more frequently resulted in silence
during feedback. As noted above, in the escape condi-
tion, the onset of the cue coincided with the onset of
the aversive sound. Here, participants had to learn the
response (go or no-go) that turned off the aversive
sound. In the avoid condition, there was no sound during
the cue presentation, and participants had to learn the
response that avoided the aversive sound turning on dur-
ing feedback. The two required responses (go, no-go)
and two conditions (escape, avoid) that affected whether

Figure 1. Experimental paradigm. (A) On each trial, one of four fractal images was presented. Participants had to learn, for each cue, whether
pressing a button (i.e., go) or withholding a button press (i.e., no-go) resulted in silence, rather than an aversive sound, during feedback. For all trials,
participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
choose to go or no-go and followed by 2 sec of feedback that consisted of an aversive sound or silence, followed by a 1-sec intertrial stimulus.
During escape trials, the aversive sound played during the cue and target, whereas during avoid trials, there was no sound during the cue and target.
Participants were informed of the onset of the target when the words “Choose: Press or Not Press” appeared on the screen. (B) Response
options. On every trial, participants could choose to either go or no-go. (C) Within each condition (i.e., escape and avoid), there was one cue
where go was the correct response and one cue where no-go was the correct response. (D) Feedback was probabilistic such that a correct response
resulted in silence 80% of the time and the aversive sound 20% of the time and vice versa for an incorrect response. ITI = intertrial interval.

Millner et al. 3

passive responses to obtain rewards) behaviors. The cur-
rent task has only aversive stimuli and uses active (go)
and passive (no-go) responses to test whether there
are different Pavlovian effects on action selection within
two aversive conditions: an escape condition, in which
participants learn a response to escape an ongoing aver-
sive state, and an avoid condition, in which participants
learn a response to avoid an impending aversive state.
We hypothesized that the escape condition would be as-
sociated with a Pavlovian bias for an active response,
whereas the avoid condition would be associated with a
passive (inhibitory) Pavlovian bias. Furthermore, we pre-
dicted that active responses to escape would lead to
more vigorous responses (as demonstrated by faster
RTs) compared with avoiding an impending punishment.

METHODS
Participants

Fifty-three participants completed the study. Fifty-two
participants were analyzed, as one participant was ex-
cluded for selecting go on every escape trial. Among the
remaining participants, ages ranged from 18 to 65 years
(M = 28.7 years, SD = 11.8 years), with 26 women.
Nearly half (44%) of the participants were of European
ancestry (n = 23), whereas 10% were of African ancestry

(n = 5), 29% were of Asian ancestry (n = 15), and the
remaining 17% of the participants were of mixed races
(n = 9). Participants were recruited from the Harvard
University Psychology Study Pool and were either com-
pensated with course credit or paid $12. The Harvard
University Institutional Review Board approved the study.

Experimental Paradigm

The paradigm (Figure 1) is adapted from a similar para-
digm by Guitart-Masip and colleagues (2012). In the cur-
rent paradigm, on every trial, participants were presented
with one of four cues (fractal images), followed by either
an aversive sound (“escape” condition) or silence
(“avoid” condition). The participants’ goal was to learn
which response (press a button: “go,” withhold a button
press: “no-go”) that more frequently resulted in silence
during feedback. As noted above, in the escape condi-
tion, the onset of the cue coincided with the onset of
the aversive sound. Here, participants had to learn the
response (go or no-go) that turned off the aversive
sound. In the avoid condition, there was no sound during
the cue presentation, and participants had to learn the
response that avoided the aversive sound turning on dur-
ing feedback. The two required responses (go, no-go)
and two conditions (escape, avoid) that affected whether

Figure 1. Experimental paradigm. (A) On each trial, one of four fractal images was presented. Participants had to learn, for each cue, whether
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participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
choose to go or no-go and followed by 2 sec of feedback that consisted of an aversive sound or silence, followed by a 1-sec intertrial stimulus.
During escape trials, the aversive sound played during the cue and target, whereas during avoid trials, there was no sound during the cue and target.
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showed that RT during no-go-to-escape trials was signifi-
cantly faster than that during no-go-to-avoid trials; how-
ever, M2 failed to capture this difference. M1, with
separate starting points for escape and avoid conditions,
captured this significant RT difference but with a smaller
effect than in the observed result (Figure 3B). Both M1
and M2 also resulted in significantly higher accuracy for
go-to-escape compared with go-to-avoid, which was not
observed in the empirical data (Figure 3A). Overall, both
models captured the qualitative effects well, including
Pavlovian influence on both response choice and vigor,
but M1 captured all the effects, whereas M2 failed to
capture the no-go RT effect.

Consistent with the qualitative comparison, random-
effects Bayesian model selection (Rigoux et al., 2014)
showed that M1 was favored over M2 (Table 2). However,
like the similar qualitative effects, the model comparison
did not strongly favor M1 over M2, because both models
captured a large amount of variance in the data (Table 2).

Finally, for the favored model, M1, we assessed the
fitted parameters. A paired t test revealed that the starting
point for the escape condition was significantly higher
(i.e., biased toward a go response) compared with the
starting point for the avoid condition, t(50) = 4.74, p <
.0001. This suggests that, in the escape trials, the pres-
ence of the aversive noise pushes the starting point of
the decision-making process closer to the go decision
boundary, requiring less evidence that the go response
has a higher value than the no-go response, which makes
a go response more likely and faster. Conversely, the
presence of a potential punishment during avoid trials
pushes the starting point closer to the no-go decision
boundary, making a no-go response more likely.

DISCUSSION

Aversive Pavlovian biases have been implicated in several
psychiatric disorders including depression (Huys et al.,

Figure 3. Accuracy and RT results for the empirical data and winning model. (A) Average accuracy and (B) RT for empirical data and model
fits (derived from Model 1). Error bars denote SEM. Performance is more accurate on no-go trials than on go responses in the avoid condition
(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
show overall slower RTs when they erroneously “go” on no-go cues across both escape and avoid conditions. These patterns are captured
qualitatively by Model 1, which posits that escape and avoid conditions induce different starting points for the drift-diffusion process. (C) Proportion
correct and (D) average RTs for each trial with smoothing based on robust spline smoothing (Garcia, 2010). We chose to not display the results
from Model 2 because, qualitatively, the plots for Models 1 and 2 appear very similar. Error bars represent SEM. *p < .05; **p = .058.
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passive responses to obtain rewards) behaviors. The cur-
rent task has only aversive stimuli and uses active (go)
and passive (no-go) responses to test whether there
are different Pavlovian effects on action selection within
two aversive conditions: an escape condition, in which
participants learn a response to escape an ongoing aver-
sive state, and an avoid condition, in which participants
learn a response to avoid an impending aversive state.
We hypothesized that the escape condition would be as-
sociated with a Pavlovian bias for an active response,
whereas the avoid condition would be associated with a
passive (inhibitory) Pavlovian bias. Furthermore, we pre-
dicted that active responses to escape would lead to
more vigorous responses (as demonstrated by faster
RTs) compared with avoiding an impending punishment.

METHODS
Participants

Fifty-three participants completed the study. Fifty-two
participants were analyzed, as one participant was ex-
cluded for selecting go on every escape trial. Among the
remaining participants, ages ranged from 18 to 65 years
(M = 28.7 years, SD = 11.8 years), with 26 women.
Nearly half (44%) of the participants were of European
ancestry (n = 23), whereas 10% were of African ancestry

(n = 5), 29% were of Asian ancestry (n = 15), and the
remaining 17% of the participants were of mixed races
(n = 9). Participants were recruited from the Harvard
University Psychology Study Pool and were either com-
pensated with course credit or paid $12. The Harvard
University Institutional Review Board approved the study.

Experimental Paradigm

The paradigm (Figure 1) is adapted from a similar para-
digm by Guitart-Masip and colleagues (2012). In the cur-
rent paradigm, on every trial, participants were presented
with one of four cues (fractal images), followed by either
an aversive sound (“escape” condition) or silence
(“avoid” condition). The participants’ goal was to learn
which response (press a button: “go,” withhold a button
press: “no-go”) that more frequently resulted in silence
during feedback. As noted above, in the escape condi-
tion, the onset of the cue coincided with the onset of
the aversive sound. Here, participants had to learn the
response (go or no-go) that turned off the aversive
sound. In the avoid condition, there was no sound during
the cue presentation, and participants had to learn the
response that avoided the aversive sound turning on dur-
ing feedback. The two required responses (go, no-go)
and two conditions (escape, avoid) that affected whether

Figure 1. Experimental paradigm. (A) On each trial, one of four fractal images was presented. Participants had to learn, for each cue, whether
pressing a button (i.e., go) or withholding a button press (i.e., no-go) resulted in silence, rather than an aversive sound, during feedback. For all trials,
participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
choose to go or no-go and followed by 2 sec of feedback that consisted of an aversive sound or silence, followed by a 1-sec intertrial stimulus.
During escape trials, the aversive sound played during the cue and target, whereas during avoid trials, there was no sound during the cue and target.
Participants were informed of the onset of the target when the words “Choose: Press or Not Press” appeared on the screen. (B) Response
options. On every trial, participants could choose to either go or no-go. (C) Within each condition (i.e., escape and avoid), there was one cue
where go was the correct response and one cue where no-go was the correct response. (D) Feedback was probabilistic such that a correct response
resulted in silence 80% of the time and the aversive sound 20% of the time and vice versa for an incorrect response. ITI = intertrial interval.
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(“avoid” condition). The participants’ goal was to learn
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response that avoided the aversive sound turning on dur-
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participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
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Participants were informed of the onset of the target when the words “Choose: Press or Not Press” appeared on the screen. (B) Response
options. On every trial, participants could choose to either go or no-go. (C) Within each condition (i.e., escape and avoid), there was one cue
where go was the correct response and one cue where no-go was the correct response. (D) Feedback was probabilistic such that a correct response
resulted in silence 80% of the time and the aversive sound 20% of the time and vice versa for an incorrect response. ITI = intertrial interval.
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showed that RT during no-go-to-escape trials was signifi-
cantly faster than that during no-go-to-avoid trials; how-
ever, M2 failed to capture this difference. M1, with
separate starting points for escape and avoid conditions,
captured this significant RT difference but with a smaller
effect than in the observed result (Figure 3B). Both M1
and M2 also resulted in significantly higher accuracy for
go-to-escape compared with go-to-avoid, which was not
observed in the empirical data (Figure 3A). Overall, both
models captured the qualitative effects well, including
Pavlovian influence on both response choice and vigor,
but M1 captured all the effects, whereas M2 failed to
capture the no-go RT effect.

Consistent with the qualitative comparison, random-
effects Bayesian model selection (Rigoux et al., 2014)
showed that M1 was favored over M2 (Table 2). However,
like the similar qualitative effects, the model comparison
did not strongly favor M1 over M2, because both models
captured a large amount of variance in the data (Table 2).

Finally, for the favored model, M1, we assessed the
fitted parameters. A paired t test revealed that the starting
point for the escape condition was significantly higher
(i.e., biased toward a go response) compared with the
starting point for the avoid condition, t(50) = 4.74, p <
.0001. This suggests that, in the escape trials, the pres-
ence of the aversive noise pushes the starting point of
the decision-making process closer to the go decision
boundary, requiring less evidence that the go response
has a higher value than the no-go response, which makes
a go response more likely and faster. Conversely, the
presence of a potential punishment during avoid trials
pushes the starting point closer to the no-go decision
boundary, making a no-go response more likely.

DISCUSSION

Aversive Pavlovian biases have been implicated in several
psychiatric disorders including depression (Huys et al.,

Figure 3. Accuracy and RT results for the empirical data and winning model. (A) Average accuracy and (B) RT for empirical data and model
fits (derived from Model 1). Error bars denote SEM. Performance is more accurate on no-go trials than on go responses in the avoid condition
(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
show overall slower RTs when they erroneously “go” on no-go cues across both escape and avoid conditions. These patterns are captured
qualitatively by Model 1, which posits that escape and avoid conditions induce different starting points for the drift-diffusion process. (C) Proportion
correct and (D) average RTs for each trial with smoothing based on robust spline smoothing (Garcia, 2010). We chose to not display the results
from Model 2 because, qualitatively, the plots for Models 1 and 2 appear very similar. Error bars represent SEM. *p < .05; **p = .058.
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the decision-making process closer to the go decision
boundary, requiring less evidence that the go response
has a higher value than the no-go response, which makes
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(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
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passive responses to obtain rewards) behaviors. The cur-
rent task has only aversive stimuli and uses active (go)
and passive (no-go) responses to test whether there
are different Pavlovian effects on action selection within
two aversive conditions: an escape condition, in which
participants learn a response to escape an ongoing aver-
sive state, and an avoid condition, in which participants
learn a response to avoid an impending aversive state.
We hypothesized that the escape condition would be as-
sociated with a Pavlovian bias for an active response,
whereas the avoid condition would be associated with a
passive (inhibitory) Pavlovian bias. Furthermore, we pre-
dicted that active responses to escape would lead to
more vigorous responses (as demonstrated by faster
RTs) compared with avoiding an impending punishment.

METHODS
Participants

Fifty-three participants completed the study. Fifty-two
participants were analyzed, as one participant was ex-
cluded for selecting go on every escape trial. Among the
remaining participants, ages ranged from 18 to 65 years
(M = 28.7 years, SD = 11.8 years), with 26 women.
Nearly half (44%) of the participants were of European
ancestry (n = 23), whereas 10% were of African ancestry

(n = 5), 29% were of Asian ancestry (n = 15), and the
remaining 17% of the participants were of mixed races
(n = 9). Participants were recruited from the Harvard
University Psychology Study Pool and were either com-
pensated with course credit or paid $12. The Harvard
University Institutional Review Board approved the study.

Experimental Paradigm

The paradigm (Figure 1) is adapted from a similar para-
digm by Guitart-Masip and colleagues (2012). In the cur-
rent paradigm, on every trial, participants were presented
with one of four cues (fractal images), followed by either
an aversive sound (“escape” condition) or silence
(“avoid” condition). The participants’ goal was to learn
which response (press a button: “go,” withhold a button
press: “no-go”) that more frequently resulted in silence
during feedback. As noted above, in the escape condi-
tion, the onset of the cue coincided with the onset of
the aversive sound. Here, participants had to learn the
response (go or no-go) that turned off the aversive
sound. In the avoid condition, there was no sound during
the cue presentation, and participants had to learn the
response that avoided the aversive sound turning on dur-
ing feedback. The two required responses (go, no-go)
and two conditions (escape, avoid) that affected whether

Figure 1. Experimental paradigm. (A) On each trial, one of four fractal images was presented. Participants had to learn, for each cue, whether
pressing a button (i.e., go) or withholding a button press (i.e., no-go) resulted in silence, rather than an aversive sound, during feedback. For all trials,
participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
choose to go or no-go and followed by 2 sec of feedback that consisted of an aversive sound or silence, followed by a 1-sec intertrial stimulus.
During escape trials, the aversive sound played during the cue and target, whereas during avoid trials, there was no sound during the cue and target.
Participants were informed of the onset of the target when the words “Choose: Press or Not Press” appeared on the screen. (B) Response
options. On every trial, participants could choose to either go or no-go. (C) Within each condition (i.e., escape and avoid), there was one cue
where go was the correct response and one cue where no-go was the correct response. (D) Feedback was probabilistic such that a correct response
resulted in silence 80% of the time and the aversive sound 20% of the time and vice versa for an incorrect response. ITI = intertrial interval.

Millner et al. 3

passive responses to obtain rewards) behaviors. The cur-
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pressing a button (i.e., go) or withholding a button press (i.e., no-go) resulted in silence, rather than an aversive sound, during feedback. For all trials,
participants were presented with a cue for 1 sec where they were unable make a response, followed by a 2-sec target where they could
choose to go or no-go and followed by 2 sec of feedback that consisted of an aversive sound or silence, followed by a 1-sec intertrial stimulus.
During escape trials, the aversive sound played during the cue and target, whereas during avoid trials, there was no sound during the cue and target.
Participants were informed of the onset of the target when the words “Choose: Press or Not Press” appeared on the screen. (B) Response
options. On every trial, participants could choose to either go or no-go. (C) Within each condition (i.e., escape and avoid), there was one cue
where go was the correct response and one cue where no-go was the correct response. (D) Feedback was probabilistic such that a correct response
resulted in silence 80% of the time and the aversive sound 20% of the time and vice versa for an incorrect response. ITI = intertrial interval.
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showed that RT during no-go-to-escape trials was signifi-
cantly faster than that during no-go-to-avoid trials; how-
ever, M2 failed to capture this difference. M1, with
separate starting points for escape and avoid conditions,
captured this significant RT difference but with a smaller
effect than in the observed result (Figure 3B). Both M1
and M2 also resulted in significantly higher accuracy for
go-to-escape compared with go-to-avoid, which was not
observed in the empirical data (Figure 3A). Overall, both
models captured the qualitative effects well, including
Pavlovian influence on both response choice and vigor,
but M1 captured all the effects, whereas M2 failed to
capture the no-go RT effect.

Consistent with the qualitative comparison, random-
effects Bayesian model selection (Rigoux et al., 2014)
showed that M1 was favored over M2 (Table 2). However,
like the similar qualitative effects, the model comparison
did not strongly favor M1 over M2, because both models
captured a large amount of variance in the data (Table 2).

Finally, for the favored model, M1, we assessed the
fitted parameters. A paired t test revealed that the starting
point for the escape condition was significantly higher
(i.e., biased toward a go response) compared with the
starting point for the avoid condition, t(50) = 4.74, p <
.0001. This suggests that, in the escape trials, the pres-
ence of the aversive noise pushes the starting point of
the decision-making process closer to the go decision
boundary, requiring less evidence that the go response
has a higher value than the no-go response, which makes
a go response more likely and faster. Conversely, the
presence of a potential punishment during avoid trials
pushes the starting point closer to the no-go decision
boundary, making a no-go response more likely.

DISCUSSION

Aversive Pavlovian biases have been implicated in several
psychiatric disorders including depression (Huys et al.,

Figure 3. Accuracy and RT results for the empirical data and winning model. (A) Average accuracy and (B) RT for empirical data and model
fits (derived from Model 1). Error bars denote SEM. Performance is more accurate on no-go trials than on go responses in the avoid condition
(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
show overall slower RTs when they erroneously “go” on no-go cues across both escape and avoid conditions. These patterns are captured
qualitatively by Model 1, which posits that escape and avoid conditions induce different starting points for the drift-diffusion process. (C) Proportion
correct and (D) average RTs for each trial with smoothing based on robust spline smoothing (Garcia, 2010). We chose to not display the results
from Model 2 because, qualitatively, the plots for Models 1 and 2 appear very similar. Error bars represent SEM. *p < .05; **p = .058.
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boundary, requiring less evidence that the go response
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fits (derived from Model 1). Error bars denote SEM. Performance is more accurate on no-go trials than on go responses in the avoid condition
(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
show overall slower RTs when they erroneously “go” on no-go cues across both escape and avoid conditions. These patterns are captured
qualitatively by Model 1, which posits that escape and avoid conditions induce different starting points for the drift-diffusion process. (C) Proportion
correct and (D) average RTs for each trial with smoothing based on robust spline smoothing (Garcia, 2010). We chose to not display the results
from Model 2 because, qualitatively, the plots for Models 1 and 2 appear very similar. Error bars represent SEM. *p < .05; **p = .058.
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Following Navarro and Fuss (2009), we used a relative
parameterization of the starting point, w = z/ω, that varies
between 0 and 1. The Wiener first passage time density
defines the joint likelihood for the choice and RT on each
trial induced by the DDM (i.e., the distribution over the
time at which one of the decision boundaries is crossed).

For the first parameterizations of the Pavlovian bias
(Model 1), we fit separate starting points (w) within the
DDM for the two conditions: wescape on escape trials and
wavoid on avoid trials. In Model 2, the conditions shared
the same starting point but varied in their drift rate:

M2:

μt ¼ βescape þ β1 Qt st; goð Þ−Qt st; no‐goð Þ½ &

for escape trials and

μt ¼ βavoid þ β1 Qt st; goð Þ−Qt st; no‐goð Þ½ &

for avoid trials (see above for how these parameteriza-
tions affect decision-making). To be clear, the starting
point was set as a free parameter in both models, but
in Model 1, it consisted of two separate free parameters
for avoid and escape (across go and no-go) trials, and in
Model 2, it was a single free parameter fit across
conditions. We used the following stepwise procedure
for the computational modeling approach.

Step 1: Model Fitting

We fit the model parameters to data from each partici-
pant individually using maximum likelihood estimation
with the fast approximation of the Wiener first passage
time density derived by Navarro and Fuss (2009). The
Wiener first passage time density defines the joint likeli-
hood for the choice and RT on each trial induced by the

Figure 2. (A) A value-based
DDM schematic. Choices and
RTs are modeled in a DDM as
the combination of (1) the
starting point (w), where the
decision process begins (the
best fitting model in the current
study had two separate starting
points [wescape, wavoid] for the
two conditions); (2) the drift
rate (modeled as a linear
function of value [see below]
as well as a constant go bias [β0]
and a go bias shared [β1] across
the two possible responses
[not shown]), which guides
the trajectory of the decision
process; (3) a nondecision
time (T ), where the stimulus is
still being processed; and (4)
the boundary separation (ω),
which represents caution
(more caution will lead to
longer RTs). Thus, the stimulus
is presented and processed, the
decision processes start and are
guided by the drift rate, and a
choice is selected once the
processes reach one boundary.
(B) Example of six trials for one
of the cues with model-based
value calculations and DDMs.
On the basis of feedback, values
for each response (go, no-go)
on a given cue are updated on a
trial-by-trial basis. For example,
on Trial 1, a “go” response
is followed by silence, which
means that the value for “go” is increased. The “no-go” value is not updated as there was no no-go response. On Trial 2, a “no-go” response is
followed by the aversive sound, so the value of the “no-go” response is decreased. Again, the value of the “go” response remains unchanged.
On each trial, the DDM drift rate is modeled using the difference in value between the two responses. Early in the task, the difference in value
between the two responses is small, resulting in a smaller drift rate and longer RTs to come to a decision. As the value difference increases
over the course of the task, the drift rate increases, which leads to faster RTs. In the example shown, the starting point is closer to the go
decision boundary, which was the case in the escape condition. In the avoid condition, the results of model fitting suggest that the starting
point was closer to the no-go decision boundary, as illustrated.
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updated over the course of learning and how those up-
dated values are translated into subsequent responses.
By providing an updated value for each response through
prediction errors on a trial-by-trial basis, these models
can specify a probability distribution of responses on
each trial (Niv & Montague, 2008). Prior studies using
similar paradigms to the current study have added a
Pavlovian model parameter to demonstrate value-based
response biases, and these models have provided higher
model evidence than models without a Pavlovian param-
eter (Cavanagh et al., 2013; Guitart-Masip et al., 2012).
One important difference between the task used in these
prior studies and the one in the current study is that, in
these prior studies, participants had to learn which cues
were associated with reward and punishment over the
course of the task, whereas in the current task, like in
Swart et al. (2017), the condition (escape/avoid) was
known at the cue onset because of the presence or ab-
sence of the aversive sound. Thus, on the basis of these
task differences, we followed Swart et al. (2017) and im-
plemented a static Pavlovian bias parameter, in contrast
to these prior studies, which modeled a Pavlovian param-
eter that dynamically updated over the task.
In a tradition separate from RL models, drift-diffusion

models (DDMs) have been used to model RT data suc-
cessfully across a variety of two-choice RT tasks, such as
visual discrimination and memory tasks (Ratcliff, Smith,
Brown, & McKoon, 2016). A standard two-alternative
DDM consists of a decision variable that evolves over
time according to two components: a deterministic linear
component whose slope is given by a drift rate parameter
and a Gaussian noise component that causes the decision
variable to diffuse over time. The decision variable begins
its trajectory at a starting point and evolves stochastically
until it reaches one of two decision boundaries at which
point a response is made (see Figure 2A).
Recent work has integrated RL models and DDMs so

that a single generative model can specify a joint distribu-
tion of responses and RT (Frank et al., 2015; Milosavljevic,
Malmaud, Huth, Koch, & Rangel, 2010). These integrated
models use an RL model to track the value of the response
options on a trial-by-trial basis, and then these RL values
are passed to a DDM, where the drift rate is parametrized
as a linear function of the value (i.e., the difference in
value between the two response options determines the
drift rate). Thus, by using the DDM to define the mapping
from values to actions (i.e., policy), we can model the
dynamics of choice and RT over the course of learning
(Figure 2B; Pedersen, Frank, & Biele, 2017).
Two aspects of the models in the study warrant addi-

tional comments. First, because no-go choices are, by
definition, the absence of a response and there is no in-
dex for the timing of the decision, we modeled the no-go
option using an implicit decision boundary, consistent
with prior work supporting this assumption (Ratcliff,
Huang-Pollock, & McKoon, 2016; Gomez, Ratcliff, &
Perea, 2007). Thus, the model is fit to RTs and choice

probabilities for go choices but only choice probabilities
for no-go choices (i.e., when no-go was selected).
Second, we included a go bias, which captures individual
variability in the overall tendency to make a go response,
thus better explaining data.

We aimed to achieve two main goals using the compu-
tational modeling. First, we verified whether including a
Pavlovian response parameter captured the behavioral
results better than a model without such a parameter.
Second, we contrasted two mechanisms by which a
Pavlovian bias affects decisions. In the first mechanism,
the Pavlovian bias was modeled by allowing the starting
points to vary among the escape/avoid conditions. This
parameterization affects choice and RT by allowing the
condition to push one response option to a starting point
closer to the decision boundary, therefore requiring less
“evidence” of a value signal to select that response. Alter-
natively, in our second mechanism, the Pavlovian bias
was modeled by allowing the drift rates to vary among
escape/avoid conditions. This parameterization affects
choice and RT by allowing each condition to amplify
the value difference between go and no-go differently.
A priori, we hypothesized the first mechanism to be
more likely than the second, as studies on biases in
DDMs for perceptual decision-making tasks have found
that changes to the starting point represent a response
bias (e.g., one response is more likely to be correct),
whereas changes to the drift rate represent a stimulus
discrimination bias (e.g., one stimulus is easier to detect;
White & Poldrack, 2014).

As noted previously, in both models, the Pavlovian
parameter is modeled as a static bias that, unlike prior stud-
ies (Cavanagh et al., 2013; Guitart-Masip et al., 2012), does
not dynamically update over time. This is because the
condition (escape or avoid) was known at cue onset be-
cause of the presence or absence of the aversive sound.

Each model we tested used the following implementa-
tion to integrate RL models and DDMs. Instrumental Q
values were updated on each trial using a simple delta
rule (Rescorla & Wagner, 1972):

Qtþ1 st;atð Þ ¼ Qt st;atð Þ þ α rt−Qt st;atð Þ½ & (1)

where α is a learning rate, st is the stimulus, rt is the re-
ward, and at is the action (go or no-go) on trial t. Then,
to translate these Q values into actions and RTs, we used
the following DDM specification. Q values determined
the drift rate μt on trial t:

μt ¼ β0 þ β1 Qt st; goð Þ−Qt st; no‐goð Þ½ &

where β0 captures a constant go bias, β1 captures a go
bias shared across responses and st is the cue on trial t
and Qt(st, go) − Qt(st, no-go) represents the difference
between Q values for go and no-go. After a nondecision
time T, the drift-diffusion process starts at z, which varies
between 0 and ω (the boundary separation parameter),
and then proceeds until a bound (0 or ω) is reached.

Millner et al. 5

showed that RT during no-go-to-escape trials was signifi-
cantly faster than that during no-go-to-avoid trials; how-
ever, M2 failed to capture this difference. M1, with
separate starting points for escape and avoid conditions,
captured this significant RT difference but with a smaller
effect than in the observed result (Figure 3B). Both M1
and M2 also resulted in significantly higher accuracy for
go-to-escape compared with go-to-avoid, which was not
observed in the empirical data (Figure 3A). Overall, both
models captured the qualitative effects well, including
Pavlovian influence on both response choice and vigor,
but M1 captured all the effects, whereas M2 failed to
capture the no-go RT effect.

Consistent with the qualitative comparison, random-
effects Bayesian model selection (Rigoux et al., 2014)
showed that M1 was favored over M2 (Table 2). However,
like the similar qualitative effects, the model comparison
did not strongly favor M1 over M2, because both models
captured a large amount of variance in the data (Table 2).

Finally, for the favored model, M1, we assessed the
fitted parameters. A paired t test revealed that the starting
point for the escape condition was significantly higher
(i.e., biased toward a go response) compared with the
starting point for the avoid condition, t(50) = 4.74, p <
.0001. This suggests that, in the escape trials, the pres-
ence of the aversive noise pushes the starting point of
the decision-making process closer to the go decision
boundary, requiring less evidence that the go response
has a higher value than the no-go response, which makes
a go response more likely and faster. Conversely, the
presence of a potential punishment during avoid trials
pushes the starting point closer to the no-go decision
boundary, making a no-go response more likely.

DISCUSSION

Aversive Pavlovian biases have been implicated in several
psychiatric disorders including depression (Huys et al.,

Figure 3. Accuracy and RT results for the empirical data and winning model. (A) Average accuracy and (B) RT for empirical data and model
fits (derived from Model 1). Error bars denote SEM. Performance is more accurate on no-go trials than on go responses in the avoid condition
(indicating Pavlovian inhibition when aversive stimuli are impending); this pattern reverses in the escape condition (indicating Pavlovian activation
when aversive stimuli are ongoing). Consistent with this interpretation, responses are also overall slower in the avoid condition. Participants also
show overall slower RTs when they erroneously “go” on no-go cues across both escape and avoid conditions. These patterns are captured
qualitatively by Model 1, which posits that escape and avoid conditions induce different starting points for the drift-diffusion process. (C) Proportion
correct and (D) average RTs for each trial with smoothing based on robust spline smoothing (Garcia, 2010). We chose to not display the results
from Model 2 because, qualitatively, the plots for Models 1 and 2 appear very similar. Error bars represent SEM. *p < .05; **p = .058.
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Learning from rewards in Sz

Waltz et al., 2007

Performance on Transfer Measures
Assessment of Procedural Go and NoGo Learning. In exper-

iment 2, we included 32 patients (80%) and 24 control subjects
(86%) in the transfer analysis who met the 75% correct criterion
on the AB test trials. A t test revealed that control subjects more
consistently chose A (the most frequently rewarded stimulus)
when presented in novel pairs than did patients [82 ! 3% vs.
70� !� 3%;� t�(54)� "� 2.852;� p� "� .01;� Figure� 4B].� This� result� is
consistent with our operationalization of impaired Go learning.
By contrast, patients (70 ! 3%) did not show a decreased
avoidance of the least frequently rewarded stimulus when pre-
sented in novel pairs, when compared with control subjects
[72 ! 4%; t (54) " .397], consistent with our operationalization of
intact NoGo learning.

Note that the lose-shift results described above appear to
contradict this evidence of intact NoGo learning. However, if one
views the measures as assessments of two different kinds of
feedback-driven learning, it is entirely plausible that a between-
group difference might be evident in reward-driven or punish-
ment-driven learning in one case but not the other. We interpret
this result to indicate that SZ patients can gradually integrate
negative outcomes to generalize and avoid poor choices over
many trials (BG-dependent), whereas they are impaired at the
online/cortical-dependent use of a single instance of negative
feedback to modify behavior in the very next trial.

Correlations Between Characterizing Variables and Experi-
mental Measures. Pearson correlation analyses between per-
formance measures from the PSS paradigm and clinical and
standard neuropsychological ratings revealed a moderate rela-
tionship between total proportion correct during acquisition
phase and total score on the SANS (r " #.372, p " .020).
Correlations between our combined measure of probabilistic
selection performance and total scores on the Calgary Depres-
sion Scale (#.063) and BPRS (#.161) did not achieve signifi-
cance. Only the negative symptom subscore of the BPRS corre-
lated with the total proportion correct during early acquisition at
the trend level (r " #.299, p " .061). None of the reality
distortion (r " .067), disorganization (r " .007), or depression
(r " #.021) subscores of the BPRS showed any evidence of a
systematic relationship with our combined measure of probabi-
listic selection performance. No correlations between PSS
performance and standard neuropsychological measures were

significant, with Pearson coefficients ranging from .197 for our
spatial short-term memory span measure to .242 for the
Wechsler Test of Adult Reading (p $ .10). This result further
suggests that patients’ poor performance on the probabilistic
learning task is not simply a product of impaired neuropsycho-
logical performance in general.

Discussion

PSS Task Performance
We examined the performance of patients and control sub-

jects on two probabilistic learning and transfer tasks. In the first
version, using Hiragana characters, patients exhibited profound
impairment in the acquisition of probabilistic contingencies. This
seemed to reflect impairments in the use of feedback to modify
behavior on a trial-by-trial basis, consistent with models of
PFC/OFC dysfunction. In the second experiment (using clip art
stimuli), patients showed impairment in the early acquisition
stages of the task, but demonstrated eventual learning of the
easiest (80:20) discrimination. However, even the patients who
learned the 80:20 discrimination showed a less robust preference
than control subjects for the 80% stimulus when it was presented
in new pairings. Patients exhibited normal performance in
avoiding the least frequently rewarded stimulus when it was
presented in novel pairings, successfully generalizing from re-
peated exposure to negative outcomes.

Thus, patients did not exhibit a simple failure in generaliza-
tion but rather more selective difficulty in learning from positive
outcomes. This dissociation cannot be easily explained by the
presence of generally lower levels of neuropsychological perfor-
mance in patients relative to control subjects, as no standard
neuropsychological measure correlated significantly with proba-
bilistic contingency acquisition and none of the main effects or
interactions from the ANOVAs for acquisition data were modified
substantially by the inclusion of WTAR scores as a covariate in
ANCOVAs.

Within the context of the computational model described
above, the deficit exhibited by patients may result primarily from
dysfunction of the direct (Go) BG pathway linking the dorsal
striatum and the globus pallidus interna, which is thought to be
driven largely by activity at D1 receptors, whereas the intact
NoGo learning exhibited by patients can be interpreted as

Figure 4. Performance of subjects on two measures of feedback-driven learning from experiment 2. In both plots, black bars " control subjects, white bars "
patients. (A) Impact of trial-by-trial task feedback on subsequent choices in a given condition in first acquisition block (20 trials in each stimulus condition).
Win-stay scores reflect the proportion of repeated stimulus selections in a given condition following reinforced choices. Lose-shift scores reflect the
proportion of switched stimulus selections in a given condition following nonreinforced choices. Total win-stay and lose-shift scores were generated by
averaging scores across conditions for each. (B) Performance of 24 control subjects and 32 patients qualified for transfer analysis in the postacquisition test
phase. This analysis only included subjects who demonstrated acquisition of the 80:20 contingency by choosing A on at least 75% of AB test trials, and thus,
the groups showed similar performance on the AB (80:20) test pair. Go learning was assessed using novel pairs involving the 80% reinforced stimulus (choose
A vs. novel), as choosing A depends on having learned from positive feedback. NoGo learning was assessed using novel pairs involving the 20% reinforced
stimulus (avoid B vs. novel), as avoiding B depends on having learned from negative feedback.

J.A. Waltz et al. BIOL PSYCHIATRY 2007;62:756–764 761
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response considered in cortex, whereas activity in the indirect
pathway sends a “NoGo” signal to suppress inappropriate re-
sponses� (Figure� 2)� (Centonze� et� al.� 2001;� Nishi� et� al.� 1997).
Furthermore, dopaminergic innervation of these pathways is
thought to be relatively distinct, such that the direct pathway is
excited via D1 receptors by bursting activity in dopamine neu-
rons, while the indirect pathway is tonically inhibited via D2
receptors. Phasic DA bursts are thought to support Go learning to
reinforce rewarding choices by enhancing neural activity and
plasticity in the direct (D1) pathway following reinforcement and
enhancing inhibition of the indirect (D2) pathway. Transient
cessations of DA cell firing, following negative feedback, are
thought to have the opposite effect: they release inhibition of the
indirect pathway and cause reductions of activity in the direct
pathway, thereby supporting NoGo learning to avoid unreward-
ing�choices�(Frank�2005;�O’Reilly�and�Frank�2006).�These�authors
concluded that in unmedicated PD patients, DA depletion atten-
uates the impact of DA bursts. In medicated PD patients, the
impact of DA “dips” is attenuated due to overall increased levels
of synaptic DA.

While learning at the level of the basal ganglia is thought to
occur on a gradual time scale, Go and NoGo signals emanating
from the BG are hypothesized to impact the rapid learning of
changing reinforcement contingencies in the frontal cortex via
parallel striatal-cortical circuits by updating working memory
(WM) representations required for representing differences in
relative�magnitude�of� reinforcement�online�(Frank�et� al.� 2001;
O’Reilly� and� Frank� 2006).� This� idea� extends� earlier� computa-

tional work emphasizing the role of phasic DA in driving the
updating�of�PFC�WM�representations�(Braver�and�Cohen�2000;
Cohen�et� al.� 1996).�The� idea� that�OFC�figures�critically� in� the
online representation of reward and punishment magnitudes and
thus subserves a kind of working memory is supported by recent
evidence� (Rolls� et� al.� 2003;� Schoenbaum� and� Roesch� 2005).
Simulations�by�Frank�and�Claus�(2006)�have�shown�that�models
capable of instantaneously updating WM representations of
reward value in OFC and using them to bias behavior via
efferent projections to the BG and motor cortical areas show
rapid acquisition of probabilistic contingencies, whereas mod-
els with OFC damage exhibit much slower learning because
they can only acquire probabilistic contingencies via changes
in synaptic weights in the BG.

Relevance of Dopamine System Function Models to SZ
This framework has the potential to offer a differentiated

account of feedback-driven learning deficits in SZ. Whereas PD
involves mainly BG hypofunction brought on by dopamine
depletion, SZ may be characterized by DA dysfunction in both
PFC and the BG. While the severity and consequences of PFC
hypofunction� in� schizophrenia� appear� to�be�profound� (Wein-
berger�1987;�Weinberger�and�Berman�1988),�BG�dysfunction�in
schizophrenia may be more mild, based on findings of relatively
intact� procedural� learning� (Keri� et� al.� 2005;� Kern� et� al.� 1997;
Weickert�et�al.�2002).

We tested three specific hypotheses by applying the paradigm
used�by�Frank�et� al.� (2004)� in� their� study�of�PD�patients.�We

Figure 1. The probabilistic stimulus selection (PSS) task. The task consists of two phases. During an acquisition phase, subjects are presented with three
training pairs and instructed to identify which stimulus from each pair is more frequently reinforced. In AB trials, for example, a choice of stimulus A leads to
positive feedback in 80% of trials, whereas a B choice is reinforced on the remaining 20%. Learning the most frequently rewarded stimulus in each pair can be
accomplished either by learning that one of the stimuli leads to positive feedback or that the other leads to negative feedback (or both). Subjects are told to
choose that stimulus as often as possible. Once subjects reach criterion on all three training pairs or complete 360 total trials, they proceed to a postacquisition
test phase, during which they are presented with four trials each of the three training pairs, along with 12 new pairs created from all unused combinations of
the training stimuli. The eight new stimulus pairs involving A and B are called the transfer pairs and are used to gauge Go and NoGo learning. If positive
feedback was more effective, they should reliably choose stimulus A in all novel test pairs in which it is present; if they learned more from negative feedback,
they should avoid stimulus B. PSS, probabilistic stimulus selection.

J.A. Waltz et al. BIOL PSYCHIATRY 2007;62:756–764 757
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was a significant feedback valence–!–learning block in-
teraction (F6,72=4.42, P=.005), qualified by a trend to-
ward a feedback valence–!–learning block–!-group in-
teraction (F6,72=2.22, P=.06 after Hyun-Feldt correction).
This last interaction suggests that the groups learned dif-
ferently over time as a function of whether they were learn-
ing from rewards or from loss avoidance.

To assess whether feedback valence differentially af-
fected final performance levels, we conducted a 2 feed-
back valence–!–2 probability–!–3 group repeated-
measures ANOVA with block 4 performance as the
dependent variable because it captured asymptotic learn-
ing levels. This analysis produced a significant main effect
of probability (F1,72=4.77, P=.03 [90% greater than 80%
stimuli]) and a significant group-!–feedback valence in-
teraction (F2,72=4.51, P=.01) (ie, the groups learned dif-
ferently as a function of feedback valence). The probability-
!-group interaction fell short of significance (F2,72=2.43,
P=.10); no other effects approached significance. One-
way ANOVAs examining performance for each of the 4
stimulus pairs were conducted to explore the nature of the
feedback valence–!-group interaction. The only signifi-
cant overall group difference was found on the 90% re-
warded stimulus (F2,74=3.83, P=.03). Post hoc LSD con-
trasts indicated that the HC group demonstrated
significantly greater learning on this stimulus than the HNS
group (P=.007); no other contrasts were significant.

To further examine feedback valence effects on learn-
ing, we computed difference scores for both the 90% and
80% conditions between end acquisition performance on
gain-seeking trials and loss-avoidance trials (Figure 3).
A positive difference score indicated better learning from
gain, while a negative difference scores indicated better
learning from loss avoidance. Individual 1-way ANOVAs
indicated that the 3 groups differed significantly on the
90% pairs (F2,72=4.56, P=.01). Post hoc LSD contrasts
indicated significantly better learning from gain than from
loss avoidance in the HC group than in the HNS group
(P=.01); all other contrasts and tests of other pairs were
nonsignificant.

Finally, we conducted within-group paired-sample t
tests to test the comparative influence of learning

achieved from gain vs loss avoidance at each probability
level. There was only one statistically significant differ-
ence: the HNS group learned significantly more from
the 90% loss-avoidance stimulus than from the 90%
gain stimulus (P" .05).

TRANSFER TEST PHASE PERFORMANCE

Performance on 9 types of novel stimulus pairings was
examined for the transfer test phase (Appendix, eFigure
1, eFigure 2, and Figure 4C). Pairings in which par-
ticipants were confronted with the most frequently re-
warded stimuli (FW in the figures) and the stimuli that
most reliably avoided losses (FLA in the figures) pro-
vided the critical test of the hypothesis that the HNS group
showed a specific impairment in representation of ex-
pected positive value of decision outcomes rather than
learning from positive PEs. The 1-way ANOVA examin-
ing differences among the groups was significant
(F2,74=5.81, P=.005), with post hoc LSD comparisons in-
dicating a significant difference between the HC group
and the HNS group (P=.001) and an approach toward a
significant difference between the LNS group and the HNS
group (P=.06). As shown in Figure 4C, the HC group
showed a robust preference for frequently rewarded
stimuli over loss avoiders, consistent with the pattern ex-
pected if they were representing the positive expected
value of the stimuli rather than relying on the number
of times a stimulus has been associated with a positive
PE. In contrast, the HNS group showed no preference for
gain relative to loss avoiders, indicating that their pref-
erences were based on the accumulation of positive PEs
and did not take into account the value associated with
those positive PEs. Although we assessed whether there
were significant differences between groups in other
stimulus–feedback valence comparisons, no other sta-
tistically significant differences were found.

An alternative explanation for our results is that the
lack of preference for gain over loss avoidance in the HNS
group might be due to difficulty in learning about re-
wards in general. However, as shown in Figure 4, the HNS
group demonstrated a robust preference for frequently
rewarded stimuli over frequently losing (FW vs FL in the
figure) stimuli during the transfer test phase, with no dif-
ferences observed among the 3 groups (overall F2,74=2.06,
P= .14). Furthermore, the HNS group preferred fre-
quently rewarded stimuli over infrequently rewarded
stimuli (FW vs IW in the figure). Therefore, the failure
to prefer “winners” over loss avoiders cannot be ex-
plained by a failure to have learned which stimuli were
associated with reward receipt.

We also examined the preference for frequent loss
avoiders over infrequent winners (FLA vs IW in the fig-
ures). All 3 groups had a robust preference for the loss
avoiders, despite the fact that the infrequent winner ac-
tually had a slightly positive expected value that was higher
than that of loss avoiders. Therefore, all 3 groups pre-
ferred the stimulus that was more frequently associated
with a positive PE over a choice that had a higher ex-
pected value but was also associated with more frequent
negative PEs during learning.
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Figure 3. Performance on the gain and loss-avoidance difference score
among patients and healthy control (HC) subjects. The difference score was
calculated using block 4 performance. Scores above zero indicate better
learning from gain than from loss avoidance, while scores below zero
indicate better learning from loss avoidance than from gain. HNS indicates
high-negative symptom; LNS, low-negative symptom.
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EFFECTS OF ANTIPSYCHOTIC MEDICATION

We calculated haloperidol equivalents for antipsychotic
medication dosage for each patient using Expert Con-
sensus Panel guidelines.50 There was no difference in over-
all antipsychotic burden between the HNS group and the
LNS group (t=0.58, P=.56). Furthermore, we found no
significant correlations between medication dosage and
any measures of acquisition, training, or transfer test phase
performance. These results suggest that antipsychotic bur-
den is unlikely to account for our findings; however, we
cannot rule out an effect of antipsychotic medication on
performance that might only be observed by studying non-
medicated patients.

COMPUTATIONAL MODELING

The goal of computational modeling was to provide quan-
titative fits of the overall pattern of acquisition and trans-
fer test phase data by each of 3 models (Appendix, eFigure
1, and eFigure 2). Figure 4B and D show that the best-
fitting model reproduces the central features of the data in
both training and transfer test phases, including better learn-
ing from gain than from loss avoidance (Figure 4B) and
preference for frequent winners over frequent loss avoid-
ers at the transfer test phase in the HC group (Figure 4D).

Both of these effects are severely attenuated in the HNS
group. The simple actor-critic model was insufficient for
the HC group because it captured neither (1) more robust
acquisition for winners vs loss avoiders (Figure 4A) nor
(2) the observed robust preference for winners over loss
avoiders at the transfer test phase. The pure Q-learning
model could not account for the observed preference of fre-
quent loss avoiders (FLA in the figures) compared with in-
frequent winners (IW in the figures) across all groups be-
cause infrequent winners have higher expected value
(Figure5B). The critical results are that the hybrid actor-
critic–Q-learning model provided the best overall fit to the
data and that the HNS group differed from the HC group
and the LNS group specifically by demonstrating a re-
duced Q-learning component.

We tested whether the fitted parameter values from the
hybrid model differed by group using ANOVA. We found
amaineffectof group for themixingparameter c (Figure5A)
(F2,67=3.8, P=.03), indicating a significant difference be-
tween groups in the degree to which the Q-value compo-
nent influenced choices. Follow-up analyses revealed sig-
nificantly lower contribution of Q values for the HNS group
compared with the HC group (t=2.77, P=.008), as well as
a trend in the comparison of the LNS group with the HC
group (t=1.70, P=.09). As shown in Figure 5A, the HC
group data were characterized by greater influence of
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Figure 4. Observed and model simulation results for end acquisition and transfer test phase performance in patients and healthy control (HC) subjects. A and B,
Observed (A) and simulated (B) end acquisition performance across groups, showing how the modeled controls had a preference for learning from gains relative
to losses, an effect that is reduced in the low-negative symptom (LNS) group and absent in the high-negative symptom (HNS) group. C and D, Observed transfer
test phase performance (C) and simulation results (D). Note that the simulations capture the reduced preference for frequent winners (FW) over frequent loss
avoiders (FLA) in the HNS group (the only significant difference in the behavioral analyses of the transfer test phase pairs), coupled with a preserved preference
for frequent winners over frequent losers (FL) and infrequent winners (IW). All groups and simulated groups show a preference for frequent loss avoiders over
infrequent winners, despite having lower expected value.
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higher than both patient groups on all standard measures
(Table). The 2 patient groups showed almost identical perfor-
mance on all standard cognitive measures.

RL TASK

The learning task was administered via commercially avail-
able software (E-Prime; Psychology Software Tools) and was
run on a laptop computer with a 17-in monitor. Stimuli were
color images of landscapes appearing on a gray background.
Participants were presented with 4 pairs of landscape items, 1
pair at a time (Figure 1). Two pairs involved potential gain;
if the correct item was selected, participants saw an image of a
nickel coupled with the word “Win!,” whereas if the incorrect
item was selected, they saw “Not a winner, Try again!” The cor-
rect response was reinforced on 90% of trials in one pair and
on 80% of trials in the other pair. Two other pairs involved learn-

ing to avoid losses; in these pairs, selection of the correct re-
sponse received the feedback “Keep your money!,” whereas se-
lection of the incorrect item resulted in the feedback “Lose!”
Therefore, if the best item in the loss-avoiding pairs was se-
lected, participants avoided a loss 90% or 80% of the time. A
brief 12-trial practice session was administered to ensure task
comprehension, followed by 160 learning trials with all pair
types presented in a randomized order. Each pair was shown
40 times during training. To examine learning, the 160 trials
were divided into 4 learning blocks of 40 trials.

Following training, the transfer test phase was presented.
In these 64 trials, the original 4 training pairs were each pre-
sented 4 times, and the 24 novel pairings were each presented
twice. For novel pairings, each trained item was presented with
every other trained item (ie, an item that had been a 90% win-
ner was paired with both items from the 80% gain pair, the 90%
loss-avoidance pair, and the 80% loss-avoidance pair). Partici-

A

Win!

Not a winner.
Try again!

Keep your
money!

Lose!

B

C

D

Figure 1. Example of reinforcement learning task stimuli and feedback. A, Feedback delivered after a correct choice (indicated by a blue border) in the reward
trials. B, Feedback delivered following an incorrect choice. C, Feedback delivered following a correct choice in the loss-avoidance trials. D, Feedback delivered
following an incorrect choice.
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Learning from rewards and losses in Sz

Gold et al., 2012

‣ Q learning to represent value 

‣ Actor-critic to represent choice quality 
independent of value

Qlearning thanactor-critic learning,whereas theHNSgroup
showed the opposite pattern.

COMMENT

These results provide insight into the origins of avoli-
tion and anhedonia in schizophrenia. First, patients with
the most severe negative symptoms demonstrate defi-
cits in learning from rewarding outcomes. This deficit is
not a manifestation of a general learning impairment be-
cause the HNS group performed at levels similar to those
of the HC group when learning to avoid losses. Second,
in the transfer test phase, the HNS group did not show a
preference for a frequently rewarded stimulus over a
frequent loss avoider; that is, they were less able to take
expected reward values into account during decision
making; therefore, decisions were based on stimulus-
response weights learned from prior PEs.

This is an RL formula for avolition: patients are bet-
ter able to learn actions that lead to the avoidance of pun-
ishing outcomes than they are to learn actions that lead
to positive outcomes. This pattern of data suggests that
negative symptoms are not associated with reduced learn-
ing from positive PEs per se, as previously suggested, but
rather with impairment in the representation of positive
expected value to guide decisions. This conclusion is con-
sistent with other data suggesting that negative symp-
toms are associated with deficits in reward-based tasks
that depend on prefrontal or orbitofrontal cortical
function.20,37,51

It is notable that the LNS group differed minimally from
the HC group in RL behavior, with no statistically sig-
nificant differences observed. Therefore, RL impair-
ments may not be characteristic of all patients with schizo-
phrenia but may be most evident in patients with HNS.
Furthermore, the fact that the performance of the LNS
group approached that of the HC group demonstrates that

RL deficits are not caused by the use of antipsychotic medi-
cations: both patient groups were similarly medicated,
and only the HNS group showed a deficit in learning from
gain. Further study is needed in medication-free pa-
tients to address this question more definitively.

How do we account for impairment in learning from
rewards with spared loss-avoidance learning in patients
with HNS? Herein, the computational modeling serves
to constrain our interpretation by providing a formal-
ization of behavioral deficits grounded by a conver-
gence of theoretical, cognitive, and neuroscientific con-
structs.52 By reducing the Q-learning contribution, which
is thought to reflect the top-down influence of the OFC,
we were able to closely simulate the pattern of data ob-
served in both the training and transfer test phases in the
HNS group. Insofar as the role of Q learning in the model
is consistent with current evidence about OFC func-
tion,53,54 the modeling results provide proof of principle
that this type of mechanism can account for the origins
of severe negative symptoms. Clearly, this is an oversim-
plification because many other neuromodulatory sys-
tems and anatomic areas are involved in reward learn-
ing and may be implicated in the impairments
documented herein. However, the modeling results dem-
onstrate that it is possible to account for patient behav-
ior in our task environment with a simple RL approach.
The finding that patients and the HC group differed not
only within the parameters of a given model but also in
the best-fitting model itself implies that caution should
be applied when interpreting functional imaging or be-
havioral data that assume that patients and control sub-
jects are using the same neural and cognitive strategy (ie,
the same model).

Overall, our data suggest that abnormalities in the re-
ward system of patients with HNS are more strongly due
to abnormalities in the cortical (representational) part of
the reward system than to the basic machinery of dopa-
mine signaling in the basal ganglia and limbic system. The
representation of goal-directed action-outcome associa-
tions has been shown to rely on prefrontal cortical func-
tion,55 and degraded prefrontal cortical representations may
explain why the HNS group showed no preference for a
gain-producing stimulus over a loss-avoiding stimulus, de-
spite the fact that one was associated with a positive out-
come and another with a zero outcome. These interpreta-
tions also converge with findings suggesting that negative
symptoms are associated with a reduced tendency to make
strategic exploratory responses to determine whether bet-
ter rewards may be available than those experienced thus
far,37 the same pattern observed in healthy individuals with
the COMT Val/Val genotype56 and associated with prefron-
tal cortical activation.57

Other findings from our group are consistent with the
results reported herein. Waltz et al20 reported that pa-
tients with schizophrenia showed impaired learning from
frequently rewarded stimuli but showed intact avoid-
ance of infrequently rewarded stimuli. In a reanalysis of
that data set stimulated by the present findings, it was
clear that patients in the HNS group drove the impaired
reward learning effect (Appendix, eFigure 1, and eFig-
ure 2). Furthermore, in functional magnetic resonance
imaging, Waltz et al57 showed intact modulation of blood
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Figure 5. The relative contribution of Q learning and actor-critic learning to
behavioral choices. A, Greater contribution of Q learning in healthy control
(HC) subjects relative to the patient groups. Only the contrast between the
HC group and the high-negative symptom (HNS) group was statistically
significant. B, Predicted performance in a model of pure actor-critic (AC) or
pure Q learning (Q) in the 2 diagnostic transfer test phase pairs. The Q model
shows clear preference for frequent winners (FW) over frequent loss
avoiders (FLA), whereas the actor-critic model does not. The 2 models show
opposite preferences for frequent loss avoiders over infrequent winners
(IW). One thousand model simulations were run to generate these
predictions using parameters fit to the controls, but the pattern is robust to
parameter changes. LNS indicates low-negative symptom.
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Qlearning thanactor-critic learning,whereas theHNSgroup
showed the opposite pattern.

COMMENT

These results provide insight into the origins of avoli-
tion and anhedonia in schizophrenia. First, patients with
the most severe negative symptoms demonstrate defi-
cits in learning from rewarding outcomes. This deficit is
not a manifestation of a general learning impairment be-
cause the HNS group performed at levels similar to those
of the HC group when learning to avoid losses. Second,
in the transfer test phase, the HNS group did not show a
preference for a frequently rewarded stimulus over a
frequent loss avoider; that is, they were less able to take
expected reward values into account during decision
making; therefore, decisions were based on stimulus-
response weights learned from prior PEs.

This is an RL formula for avolition: patients are bet-
ter able to learn actions that lead to the avoidance of pun-
ishing outcomes than they are to learn actions that lead
to positive outcomes. This pattern of data suggests that
negative symptoms are not associated with reduced learn-
ing from positive PEs per se, as previously suggested, but
rather with impairment in the representation of positive
expected value to guide decisions. This conclusion is con-
sistent with other data suggesting that negative symp-
toms are associated with deficits in reward-based tasks
that depend on prefrontal or orbitofrontal cortical
function.20,37,51

It is notable that the LNS group differed minimally from
the HC group in RL behavior, with no statistically sig-
nificant differences observed. Therefore, RL impair-
ments may not be characteristic of all patients with schizo-
phrenia but may be most evident in patients with HNS.
Furthermore, the fact that the performance of the LNS
group approached that of the HC group demonstrates that

RL deficits are not caused by the use of antipsychotic medi-
cations: both patient groups were similarly medicated,
and only the HNS group showed a deficit in learning from
gain. Further study is needed in medication-free pa-
tients to address this question more definitively.

How do we account for impairment in learning from
rewards with spared loss-avoidance learning in patients
with HNS? Herein, the computational modeling serves
to constrain our interpretation by providing a formal-
ization of behavioral deficits grounded by a conver-
gence of theoretical, cognitive, and neuroscientific con-
structs.52 By reducing the Q-learning contribution, which
is thought to reflect the top-down influence of the OFC,
we were able to closely simulate the pattern of data ob-
served in both the training and transfer test phases in the
HNS group. Insofar as the role of Q learning in the model
is consistent with current evidence about OFC func-
tion,53,54 the modeling results provide proof of principle
that this type of mechanism can account for the origins
of severe negative symptoms. Clearly, this is an oversim-
plification because many other neuromodulatory sys-
tems and anatomic areas are involved in reward learn-
ing and may be implicated in the impairments
documented herein. However, the modeling results dem-
onstrate that it is possible to account for patient behav-
ior in our task environment with a simple RL approach.
The finding that patients and the HC group differed not
only within the parameters of a given model but also in
the best-fitting model itself implies that caution should
be applied when interpreting functional imaging or be-
havioral data that assume that patients and control sub-
jects are using the same neural and cognitive strategy (ie,
the same model).

Overall, our data suggest that abnormalities in the re-
ward system of patients with HNS are more strongly due
to abnormalities in the cortical (representational) part of
the reward system than to the basic machinery of dopa-
mine signaling in the basal ganglia and limbic system. The
representation of goal-directed action-outcome associa-
tions has been shown to rely on prefrontal cortical func-
tion,55 and degraded prefrontal cortical representations may
explain why the HNS group showed no preference for a
gain-producing stimulus over a loss-avoiding stimulus, de-
spite the fact that one was associated with a positive out-
come and another with a zero outcome. These interpreta-
tions also converge with findings suggesting that negative
symptoms are associated with a reduced tendency to make
strategic exploratory responses to determine whether bet-
ter rewards may be available than those experienced thus
far,37 the same pattern observed in healthy individuals with
the COMT Val/Val genotype56 and associated with prefron-
tal cortical activation.57

Other findings from our group are consistent with the
results reported herein. Waltz et al20 reported that pa-
tients with schizophrenia showed impaired learning from
frequently rewarded stimuli but showed intact avoid-
ance of infrequently rewarded stimuli. In a reanalysis of
that data set stimulated by the present findings, it was
clear that patients in the HNS group drove the impaired
reward learning effect (Appendix, eFigure 1, and eFig-
ure 2). Furthermore, in functional magnetic resonance
imaging, Waltz et al57 showed intact modulation of blood
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Figure 5. The relative contribution of Q learning and actor-critic learning to
behavioral choices. A, Greater contribution of Q learning in healthy control
(HC) subjects relative to the patient groups. Only the contrast between the
HC group and the high-negative symptom (HNS) group was statistically
significant. B, Predicted performance in a model of pure actor-critic (AC) or
pure Q learning (Q) in the 2 diagnostic transfer test phase pairs. The Q model
shows clear preference for frequent winners (FW) over frequent loss
avoiders (FLA), whereas the actor-critic model does not. The 2 models show
opposite preferences for frequent loss avoiders over infrequent winners
(IW). One thousand model simulations were run to generate these
predictions using parameters fit to the controls, but the pattern is robust to
parameter changes. LNS indicates low-negative symptom.
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Qlearning thanactor-critic learning,whereas theHNSgroup
showed the opposite pattern.

COMMENT

These results provide insight into the origins of avoli-
tion and anhedonia in schizophrenia. First, patients with
the most severe negative symptoms demonstrate defi-
cits in learning from rewarding outcomes. This deficit is
not a manifestation of a general learning impairment be-
cause the HNS group performed at levels similar to those
of the HC group when learning to avoid losses. Second,
in the transfer test phase, the HNS group did not show a
preference for a frequently rewarded stimulus over a
frequent loss avoider; that is, they were less able to take
expected reward values into account during decision
making; therefore, decisions were based on stimulus-
response weights learned from prior PEs.

This is an RL formula for avolition: patients are bet-
ter able to learn actions that lead to the avoidance of pun-
ishing outcomes than they are to learn actions that lead
to positive outcomes. This pattern of data suggests that
negative symptoms are not associated with reduced learn-
ing from positive PEs per se, as previously suggested, but
rather with impairment in the representation of positive
expected value to guide decisions. This conclusion is con-
sistent with other data suggesting that negative symp-
toms are associated with deficits in reward-based tasks
that depend on prefrontal or orbitofrontal cortical
function.20,37,51

It is notable that the LNS group differed minimally from
the HC group in RL behavior, with no statistically sig-
nificant differences observed. Therefore, RL impair-
ments may not be characteristic of all patients with schizo-
phrenia but may be most evident in patients with HNS.
Furthermore, the fact that the performance of the LNS
group approached that of the HC group demonstrates that

RL deficits are not caused by the use of antipsychotic medi-
cations: both patient groups were similarly medicated,
and only the HNS group showed a deficit in learning from
gain. Further study is needed in medication-free pa-
tients to address this question more definitively.

How do we account for impairment in learning from
rewards with spared loss-avoidance learning in patients
with HNS? Herein, the computational modeling serves
to constrain our interpretation by providing a formal-
ization of behavioral deficits grounded by a conver-
gence of theoretical, cognitive, and neuroscientific con-
structs.52 By reducing the Q-learning contribution, which
is thought to reflect the top-down influence of the OFC,
we were able to closely simulate the pattern of data ob-
served in both the training and transfer test phases in the
HNS group. Insofar as the role of Q learning in the model
is consistent with current evidence about OFC func-
tion,53,54 the modeling results provide proof of principle
that this type of mechanism can account for the origins
of severe negative symptoms. Clearly, this is an oversim-
plification because many other neuromodulatory sys-
tems and anatomic areas are involved in reward learn-
ing and may be implicated in the impairments
documented herein. However, the modeling results dem-
onstrate that it is possible to account for patient behav-
ior in our task environment with a simple RL approach.
The finding that patients and the HC group differed not
only within the parameters of a given model but also in
the best-fitting model itself implies that caution should
be applied when interpreting functional imaging or be-
havioral data that assume that patients and control sub-
jects are using the same neural and cognitive strategy (ie,
the same model).

Overall, our data suggest that abnormalities in the re-
ward system of patients with HNS are more strongly due
to abnormalities in the cortical (representational) part of
the reward system than to the basic machinery of dopa-
mine signaling in the basal ganglia and limbic system. The
representation of goal-directed action-outcome associa-
tions has been shown to rely on prefrontal cortical func-
tion,55 and degraded prefrontal cortical representations may
explain why the HNS group showed no preference for a
gain-producing stimulus over a loss-avoiding stimulus, de-
spite the fact that one was associated with a positive out-
come and another with a zero outcome. These interpreta-
tions also converge with findings suggesting that negative
symptoms are associated with a reduced tendency to make
strategic exploratory responses to determine whether bet-
ter rewards may be available than those experienced thus
far,37 the same pattern observed in healthy individuals with
the COMT Val/Val genotype56 and associated with prefron-
tal cortical activation.57

Other findings from our group are consistent with the
results reported herein. Waltz et al20 reported that pa-
tients with schizophrenia showed impaired learning from
frequently rewarded stimuli but showed intact avoid-
ance of infrequently rewarded stimuli. In a reanalysis of
that data set stimulated by the present findings, it was
clear that patients in the HNS group drove the impaired
reward learning effect (Appendix, eFigure 1, and eFig-
ure 2). Furthermore, in functional magnetic resonance
imaging, Waltz et al57 showed intact modulation of blood
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Figure 5. The relative contribution of Q learning and actor-critic learning to
behavioral choices. A, Greater contribution of Q learning in healthy control
(HC) subjects relative to the patient groups. Only the contrast between the
HC group and the high-negative symptom (HNS) group was statistically
significant. B, Predicted performance in a model of pure actor-critic (AC) or
pure Q learning (Q) in the 2 diagnostic transfer test phase pairs. The Q model
shows clear preference for frequent winners (FW) over frequent loss
avoiders (FLA), whereas the actor-critic model does not. The 2 models show
opposite preferences for frequent loss avoiders over infrequent winners
(IW). One thousand model simulations were run to generate these
predictions using parameters fit to the controls, but the pattern is robust to
parameter changes. LNS indicates low-negative symptom.
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Reversal learning

Waltz and Gold 2007

time previously was now reinforced only 20% of the time.
In order to reach criterion in this phase, subjects need to
detect the shift in reinforcement contingencies and learn to
choose the stimulus now reinforced 80% of the time. If
subjects succeeded in reaching criterion in this phase, the
reinforcement contingencieswere reversed onemore time,
and subjects needed to learn to choose the stimulus that
was originally correct, in order to reach criterion. Each
subject thus completed up to 2 reversal stages with each
stimulus pair (or up to 6 total, along with the 3 initial
discrimination stages).

1.5. Statistical analyses

In order to assess differences in the numbers of
discrimination and reversal stages achieved by partici-
pants in the two groups, we determined the numbers of
subjects in each group achieving given numbers of
discriminations and reversals and performed chi-square
tests. Subjects were said to have “achieved” a stage if
they had reached the learning criterion within 50 trials.
We also quantified the number of “first reversals”
achieved by subjects, which could range from 0 to 3.
This term was used to designate the initial reversal of a
learned discrimination. We compared the subjects from
each group who achieved all possible discriminations

on the numbers of first reversals achieved, in order to
determine if subjects who showed relatively intact
discrimination learning still show impairment in the
reversal of acquired discriminations. We also compared
the subjects from each group who achieved all possible
discriminations on the proportion of error trials during
each stage type. An “error” reflected the choice of the
less-frequently reinforced stimulus, regardless of the
type of feedback given on that trial. We used an
Analysis of Covariance (ANCOVA) to compare
average error rates during discrimination stages and
reversal stages. This ANCOVA used factors of group
and learning stage (discrimination versus reversal) and
used performance on the WTAR as a covariate to
control for the effects of more between-group global
differences in intellectual functioning.

2. Results

2.1. Initial discrimination learning performance

We first examined the ability of both groups to learn
the initial discriminations. As shown in Fig. 1A, the
groups performed similarly. This impression was con-
firmed statistically by the results of a chi-square test
[χ2(3)=2.084, p=0.555]. Greater than 60% of subjects in

Fig. 1. Task performance by controls (gray bars) and patients with schizophrenia (black bars). (A) Percentages of subjects in each group achieving
possible numbers of initial discriminations. (B) Percentages of subjects in each group achieving different numbers of reversals (6 were possible).
(C) Numbers of initial discriminations reversed at least once by participants in each group (maximum of 3). Twenty controls and 22 patients achieved
all three initial discriminations. (D) Average percentages of error trials on initial discrimination and first reversal trials by participants.

299J.A. Waltz, J.M. Gold / Schizophrenia Research 93 (2007) 296–303

Re
ve

rs
al

Re
ve

rs
al

80% 20% 80% 20%20% 80%



Quentin Huys, TNU/PUKRL in mental health 2018 Computational Psychiatry Satellite @ SOBP

Reversal models

Schlagenhauf et al., 2014

‣ Standard RW Q learning models 

‣ Double-updated Q learning models 

‣ Hidden Markov Model 
• captures actual inference 
• allows definition of subjectively informative events

Qt(s, a) = Qt�1(s, a) + ↵ �t
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Hidden Markov Model
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Hidden Markov Model
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pFWE corrected for VS PE VOI = 0.049; L: t = 2.562, [−11 6 −5],
pFWE corrected for VS VOI = 0.047) (see Fig. 2B). There were no
significant group activation or group differences outside the VS VOI
when applying FWE whole brain correction (see also Supp Table 1
and 2).

Computational modeling of behavior

Bayesian model comparison showed that a Hidden Markov Model
provided the most parsimonious account of behavior (Fig. 3A). This
model fitted 22/24 control participants, but only 13/24 patients were
fitted better than chance (Fig. 3B). Controls and good fitting patients

displayed behavioral adaptation after reversals, while poorly fitting pa-
tients did not (Fig. 3C).

Repeating behavioral analyses (see Section 3.1) for these three
groups using a group (good-fit HC, good-fit SZ, poor-fit SZ) × trial
(first ten trials after reversal occurred) repeated-measures
ANOVA revealed a significant main effect of trial (F(3.94,173.69) =
7.604, p b 0.001), a significant main effect of group (F(3,44) =
11.697, p b 0.001) and a significant group by trial interaction
(F(11.84,173.69) = 5.377, p b 0.001) (Fig. 3C). A one-way ANOVA
of the number of achieved reversals (number of blocks in which
criteria was reached) showed a significant group effect (F(3,47) =
4.556, p = 0.007) and post-hoc t-tests with Bonferroni-correction
revealed that poor-fit SZ patients differed from both other groups

Fig. 2. Prediction error signal in the ventral striatum. A: Prediction error signal in 24 healthy controls. B: Stronger PE signal in healthy controls (n = 24) compared to unmedicated
schizophrenia patients (n = 22).

Fig. 3.Model comparison. A: Model Bayesian Information Criterion (∆BICint) scores (compared to the best model). The best model has the lowest score (∆BICint = 0). The red line shows
the random effects threshold. B: Model fit to individual participants (black dots). Red crosses indicate participants not fitted better than chance. Red dashed lines show group means for
participants fitted better than chance. C: Average learning curves after reversals for participants fittedworse than chance (red), and for HC and SZfitted better than chance (blue and green,
respectively). Dashed lines show action choices generated from the model: after fitting the parameters to each subject's data, the model was run on the same task and surrogate choices
were generated. D: Model ∆BICint scores for poor-fit schizophrenia patients (fitted worse than chance). Asterisks indicate the best fitting model. For further details see Supplementary
Results. Abbreviations: SA = stimulus-action; DSA = Double stimulus-action, double update model; HMM = Hidden Markov Model; R/P = models with separate reward and punish-
ment effects.
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(p-values b 0.05), while no group difference was evident between
good-fit HC and good-fit SZ (p N 0.8). Examining the 11 poor-fit
schizophrenia patients alone (Fig. 3D) revealed that the most parsimo-
nious (though emphatically still poor) model was the most simple,
namely a Rescorla–Wagner model (SA), which neglects the reciprocity
between the two stimuli and the step-wise switch task structure.

To explore differences in model fit within the patients we applied a
step-wise linear regression analysis. This showed that model fit was
predicted only by positive symptoms (β = −0.463, t = −2.452,
p = 0.02) but not by negative symptoms or other PANSS scores, nor
by premorbid intelligence or attention (all p-values N 0.3). This indi-
cates that patients with more severe positive symptoms were less able
to infer and use the latent structure of the task.

The HMM contained three parameters: two captured participants'
sensitivity to rewards and punishments; a further parameter γ captured
their beliefs about how likely the task state was to remain the same on
each trial. Controls and schizophrenia patients differed in the model pa-
rameters of reward sensitivity and stay probability (MANOVA compar-
ing all HC (n = 24) vs. all SZ (n = 22): F(3,44) = 6.147, p b 0.001).
Again, looking at the three subgroups (good-fit HC (n = 22), good-fit
SZ (n = 13), and poor-fit SZ (n = 11)) this revealed specific group dif-
ferences compared to controls (MANOVA HC vs. good-fit SZ vs. poor-fit
SZ: F(6,84) = 7.595, p b 0.001). Post-hoc t-tests showed that reward
sensitivity differed between controls and poor-fit patients (p b 0.001
Bonferroni corrected, with poor-fit patients displaying reward insensi-
tivity), but not between controls and good-fit patients (p N 0.3
Bonferroni corrected; Fig. 4A). As seen in the learning curves (Fig. 3A),
the subgroup of patient who was poorly fitted by the HMM, and who
displayed low reward sensitivity, also showed a blunted learning curve
indicating little behavioral adaptation. On the other hand, the stay prob-
ability was significantly different between controls and poorly fitted as
well as between controls and well fitted patients (p b 0.001 and
p = 0.003 respectively, Bonferroni corrected; Fig. 4B). Thus, patients'
higher tendency to switch differentiated them from controls even after
excluding participants who were not sensitive to the task structure.

To obviate a concern that the above observed group difference in
ventral striatal prediction error signaling might be due to differences
in model fit, we conducted additional analyses using two different ap-
proaches. First we repeated the initial RW analysis (see result section:
Neural correlates of prediction errors) in the two groups including
only subjects with good model fit (22 good-fit HC vs. the 13 good-fit
schizophrenia patients). Here group differences approached signifi-
cance bilaterally in the VS (R: t = 2.370, [20 3 −8], pFWE corrected for VS

PE VOI =0.068; L: t = 2.428, [−11 6 −5], pFWE corrected for VS PE

VOI = 0.072). In a second set of analyses we included the individual
likelihood (predictive probability) as a covariate. And found no signifi-
cant correlation between the VS PE signal and the predictive probability
neither in a one-sample t-test across all patients (n = 22) and controls
(n = 24) taken together (pFWE corrected for VS PE VOI N .3) nor in a one-
sample t-test including only the patients (pFWE corrected for VS PE VOI N .5).

Furthermore, when including the predictive probability in the initial
group comparison (2-sample t-test comparing 24 HC vs. 22 SZ), the
group differences in the VS remained significant (R: t = 2.553, [20
3 −8], pFWE corrected for VS PE VOI = 0.050; L: t = 3.187, [−11 6 −5],
pFWE corrected for VS PE VOI = 0.016).

Neural correlates of subjectivly perceived reversal errors

We finally used the Hidden Markov model (HMM) to approximate
participants' beliefs about reversals, rather than the experimenters' ob-
jective knowledge about task state (see Methods and Suppl. Material).
The HMM infers, for every trial, which is the more likely rewarding
stimulus. Informative punishments are punishments that lead to a
switch in behavior due to a switch in beliefs. Punishments that result
in a behavioral switchwithout a belief switch are labeled uninformative
as subjects appear to have acted erroneously with respect to their own
belief. By defining events in this manner, it may be that the reward
structure surrounding the events could differ between groups. This
could confound the interpretation of any neural group differences.
However, Supplementary Fig. S3 shows that reward rates before these
events did not differ between groups (see Supplementary Data). The
22 healthy controls with good model fit showed significant activation
for the contrast ‘informative punishment – informative reward’, which
identifies ‘informative errors’ that putatively guide behavioral adapta-
tion, in bilateral ventral striatum (R: t = 3.932, [17 8−3], pFWE corrected

for VS VOI = 0.002; L: t = 3.919, [−16 11 −5], pFWE corrected for VS

VOI = 0.002), the dmPFC (t = 7.641, [7 13 48], pFWE whole brain b 0.001)
and bilateral vlPFC (R: t = 7.038, [47 18 3], p

FWE whole brain
b 0.001; L:

t = 6.635, [−30 23−5], pFWE whole brain = 0.001).
Group comparison between HC and all SZ patients (including all pa-

tients, bothwith good and poormodelfit, n = 22) showed that patients
displayed reduced BOLD response in bilateral ventral striatum (R:
t = 3.621; [17 8 −5]; pFWE corrected for VS VOI = 0.0052 and L:
t = 3.733; [−16 8 −5]; pFWE corrected for VS VOI = 0.004), as well as
dmPFC (t = 4.260; [12 18 40]; pFWE corrected for main effect = 0.003) and
the right vlPFC (R: t = 4.070, [47 18 0], pFWE corrected for main effect =
0.005). The group difference in the left vlPFC approached significance
(L: t = 3.036, [−33 20 −10], pFWE corrected for main effect = .092) (see
also Supp. Table 3 and 4).

Examining the parameter estimates of the subgroups indicated
that reduced ventral striatal activation was present in SZ patients
with good as well as with poor model fit, while reduced prefrontal
activation was only observed for patients with poor model fit (see
Fig. 5). Post-hoc t-tests showed that in right ventral striatum con-
trols differed from both patient groups, while the two patient groups
did not differ from each other (VS R: HC N poor-fit patients t = 3.51,
[17 3 −5]; pFWE corrected for VS VOI = 0.008; HC N good-fit patients
t = 2.81, [17 8 −5]; pFWE corrected for VS VOI = 0.045; good fit N poor
fit patients pFWE corrected for VS VOI N 0.1), while in the left ventral stri-
atum good fit patients had only a trendwise reduced activation

Fig. 4.Group differences for HMMparameters. Comparison ofmodel parameters between healthy controls (blue) and schizophrenia patients (green) for stay probability parameter γ (A)
and reward sensitivity c (B). Stay probability was significantly different between HC and all SZ (n = 22), and remained so when excluding participants fitted worse than chance. Reward
sensitivity, on the other hand, did not differ between HC and SZ who were well fitted, but did indeed differ if the poorly fitted subjects were included.
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(p-values b 0.05), while no group difference was evident between
good-fit HC and good-fit SZ (p N 0.8). Examining the 11 poor-fit
schizophrenia patients alone (Fig. 3D) revealed that the most parsimo-
nious (though emphatically still poor) model was the most simple,
namely a Rescorla–Wagner model (SA), which neglects the reciprocity
between the two stimuli and the step-wise switch task structure.

To explore differences in model fit within the patients we applied a
step-wise linear regression analysis. This showed that model fit was
predicted only by positive symptoms (β = −0.463, t = −2.452,
p = 0.02) but not by negative symptoms or other PANSS scores, nor
by premorbid intelligence or attention (all p-values N 0.3). This indi-
cates that patients with more severe positive symptoms were less able
to infer and use the latent structure of the task.

The HMM contained three parameters: two captured participants'
sensitivity to rewards and punishments; a further parameter γ captured
their beliefs about how likely the task state was to remain the same on
each trial. Controls and schizophrenia patients differed in the model pa-
rameters of reward sensitivity and stay probability (MANOVA compar-
ing all HC (n = 24) vs. all SZ (n = 22): F(3,44) = 6.147, p b 0.001).
Again, looking at the three subgroups (good-fit HC (n = 22), good-fit
SZ (n = 13), and poor-fit SZ (n = 11)) this revealed specific group dif-
ferences compared to controls (MANOVA HC vs. good-fit SZ vs. poor-fit
SZ: F(6,84) = 7.595, p b 0.001). Post-hoc t-tests showed that reward
sensitivity differed between controls and poor-fit patients (p b 0.001
Bonferroni corrected, with poor-fit patients displaying reward insensi-
tivity), but not between controls and good-fit patients (p N 0.3
Bonferroni corrected; Fig. 4A). As seen in the learning curves (Fig. 3A),
the subgroup of patient who was poorly fitted by the HMM, and who
displayed low reward sensitivity, also showed a blunted learning curve
indicating little behavioral adaptation. On the other hand, the stay prob-
ability was significantly different between controls and poorly fitted as
well as between controls and well fitted patients (p b 0.001 and
p = 0.003 respectively, Bonferroni corrected; Fig. 4B). Thus, patients'
higher tendency to switch differentiated them from controls even after
excluding participants who were not sensitive to the task structure.

To obviate a concern that the above observed group difference in
ventral striatal prediction error signaling might be due to differences
in model fit, we conducted additional analyses using two different ap-
proaches. First we repeated the initial RW analysis (see result section:
Neural correlates of prediction errors) in the two groups including
only subjects with good model fit (22 good-fit HC vs. the 13 good-fit
schizophrenia patients). Here group differences approached signifi-
cance bilaterally in the VS (R: t = 2.370, [20 3 −8], pFWE corrected for VS

PE VOI =0.068; L: t = 2.428, [−11 6 −5], pFWE corrected for VS PE

VOI = 0.072). In a second set of analyses we included the individual
likelihood (predictive probability) as a covariate. And found no signifi-
cant correlation between the VS PE signal and the predictive probability
neither in a one-sample t-test across all patients (n = 22) and controls
(n = 24) taken together (pFWE corrected for VS PE VOI N .3) nor in a one-
sample t-test including only the patients (pFWE corrected for VS PE VOI N .5).

Furthermore, when including the predictive probability in the initial
group comparison (2-sample t-test comparing 24 HC vs. 22 SZ), the
group differences in the VS remained significant (R: t = 2.553, [20
3 −8], pFWE corrected for VS PE VOI = 0.050; L: t = 3.187, [−11 6 −5],
pFWE corrected for VS PE VOI = 0.016).

Neural correlates of subjectivly perceived reversal errors

We finally used the Hidden Markov model (HMM) to approximate
participants' beliefs about reversals, rather than the experimenters' ob-
jective knowledge about task state (see Methods and Suppl. Material).
The HMM infers, for every trial, which is the more likely rewarding
stimulus. Informative punishments are punishments that lead to a
switch in behavior due to a switch in beliefs. Punishments that result
in a behavioral switchwithout a belief switch are labeled uninformative
as subjects appear to have acted erroneously with respect to their own
belief. By defining events in this manner, it may be that the reward
structure surrounding the events could differ between groups. This
could confound the interpretation of any neural group differences.
However, Supplementary Fig. S3 shows that reward rates before these
events did not differ between groups (see Supplementary Data). The
22 healthy controls with good model fit showed significant activation
for the contrast ‘informative punishment – informative reward’, which
identifies ‘informative errors’ that putatively guide behavioral adapta-
tion, in bilateral ventral striatum (R: t = 3.932, [17 8−3], pFWE corrected

for VS VOI = 0.002; L: t = 3.919, [−16 11 −5], pFWE corrected for VS

VOI = 0.002), the dmPFC (t = 7.641, [7 13 48], pFWE whole brain b 0.001)
and bilateral vlPFC (R: t = 7.038, [47 18 3], p

FWE whole brain
b 0.001; L:

t = 6.635, [−30 23−5], pFWE whole brain = 0.001).
Group comparison between HC and all SZ patients (including all pa-

tients, bothwith good and poormodelfit, n = 22) showed that patients
displayed reduced BOLD response in bilateral ventral striatum (R:
t = 3.621; [17 8 −5]; pFWE corrected for VS VOI = 0.0052 and L:
t = 3.733; [−16 8 −5]; pFWE corrected for VS VOI = 0.004), as well as
dmPFC (t = 4.260; [12 18 40]; pFWE corrected for main effect = 0.003) and
the right vlPFC (R: t = 4.070, [47 18 0], pFWE corrected for main effect =
0.005). The group difference in the left vlPFC approached significance
(L: t = 3.036, [−33 20 −10], pFWE corrected for main effect = .092) (see
also Supp. Table 3 and 4).

Examining the parameter estimates of the subgroups indicated
that reduced ventral striatal activation was present in SZ patients
with good as well as with poor model fit, while reduced prefrontal
activation was only observed for patients with poor model fit (see
Fig. 5). Post-hoc t-tests showed that in right ventral striatum con-
trols differed from both patient groups, while the two patient groups
did not differ from each other (VS R: HC N poor-fit patients t = 3.51,
[17 3 −5]; pFWE corrected for VS VOI = 0.008; HC N good-fit patients
t = 2.81, [17 8 −5]; pFWE corrected for VS VOI = 0.045; good fit N poor
fit patients pFWE corrected for VS VOI N 0.1), while in the left ventral stri-
atum good fit patients had only a trendwise reduced activation

Fig. 4.Group differences for HMMparameters. Comparison ofmodel parameters between healthy controls (blue) and schizophrenia patients (green) for stay probability parameter γ (A)
and reward sensitivity c (B). Stay probability was significantly different between HC and all SZ (n = 22), and remained so when excluding participants fitted worse than chance. Reward
sensitivity, on the other hand, did not differ between HC and SZ who were well fitted, but did indeed differ if the poorly fitted subjects were included.
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compared to controls and showed a trendwise higher activation
compared to poor-fit patients (VS L: HC N poor-fit patients t = 4.02,
[−16 6 −3], pFWE corrected for VS VOI = 0.002; HC N good-fit patients
t = 2.45, [−16 8−5]; pFWE corrected for VS VOI = 0.095; good-fit N poor-
fit patients t = 2.52, [−6 11 −10]; pFWE corrected for VS VOI = 0.083). In
the prefrontal areas, good-fit patients differed from poor fit patients
but not from healthy controls (vlPFC R: HC N poor fit patients
t = 4.54, [47 18 0]; pFWE corrected for main effect = 0.001; HC N good fit
patients pFWE corrected for main effect N 0.2; good-fit N poor-fit patients
t = 3.45, [32 23 8]; pFWE corrected for main effect = 0.030; dmPFC:
HC N poor-fit patients t = 4.67, [10 16 45], p = 0.001; HC Ngood-fit
patients pFWE corrected for main effect N 0.2; good-fit N poor-fit patients
t = 3.28, [10 13 45]; pFWE corrected for main effect = 0.049).

Comparison of drug-naïve vs. previously medicated patients

To address the effect of medication history in this sample of unmed-
icated schizophrenia patients, the subgroup ofmedication-free, but pre-
viously medicated patients (n = 9) was compared to the subgroup of
drug-naïve patients (n = 15). On the behavioral level no differences
were observed for the percentage of correct responses (drug-naïve:
65.4 +/− 8.53; medication-free: 62.4 +/− 5.56; p N .3), the number
of learned conditions (drug-naïve: 5.27 +/− 1.75; medication-free:
4.22 +/− 1.64; p N .1) nor for the number of subjects with good
model fit (10/15 drug-naïve and 3/9 medication-free patients with
good HMM model fit; Chi-square test p N .1). On the neuronal
level a trend for a higher fMRI PE activation in the left VS
(t = 2.47, [−11 13 −5], pFWE corrected for VS PE VOI = 0.089) was ob-
served in the previously medicated patient group (n = 9) compared

to the drug-naïve patients (n = 13). No difference was observed in
the right VS (pFWE corrected for VS PE VOI N .5) or outside the VS for the PE
activation. The neuronal correlates of subjectively perceived reversal er-
rors derived from the HMM showed no difference between drug-naïve
and previously medicated patients (2-sample t-test for the contrast
‘informative punishment – informative reward’) neither in the VS
(pFWE corrected for VS VOI N .3) nor outside the VS.

Discussion

To the best of our knowledge, this is the first observation of a neural
signature of a reversal learning deficits in unmedicated schizophrenia
patients. We show that ventral striatal dysfunction is a central element
of this deficit in unmedicated patients. A key aspect of our results is that
this difference persists and drives group differences even when we use
detailed computational methods to discount the impact of possible dif-
ferent strategies employed by individual patients.

Behavioral deficit during reversal learning

Behavioral results revealed, in line with previous findings, that pa-
tients performed worse than controls during reversal learning (Elliott
et al., 1995; Leeson et al., 2009; Murray et al., 2008a; Pantelis et al.,
1997; Waltz and Gold, 2007; Waltz et al., 2013). This was due to two
distinct factors, namely a reinforcement insensitivity and a tendency
to switch. First, low reinforcement sensitivity identified subjects who
learned poorly. Poorly fitted patients also tended to have more severe
positive PANSS scores. Reinforcement insensitivity likely generalizes
broadly across tasks, and could contribute to an increased error rate

Fig. 5. Group difference for the contrast ‘informative punishment – informative reward’. A + B: Healthy controls compared to schizophrenia patients (combining patients with good and
bad model fit) displayed stronger activation in the bilateral ventral striatum (VS) and right ventrolateral prefrontal cortex (vlPFC) for the contrast ‘informative punishment – informative
reward’ derived from the HMMmodel. C: Plots of parameter estimates revealed that patients with good and bad model fit showed reduced VS activation compared to healthy controls
(upper and middle panel), while only patients with bad model fit showed reduced activation in the right vlPFC (lower panel) (for post-hoc t-tests — see results section).
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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the WM process, and thus, as expected, SZ subjects had a signif-
icantly higher score than controls (Fig. 3F; t ! 3.8; p ! 0.0003).
Notably, this score was significantly negatively correlated with
the direct WM measure (! ! "0.52; p # 10"6), and this re-
mained true within each group (both p values #0.05; ! # "0.29).

These results confirmed our hypothesis that the observed
learning impairment in patients was related to a deficit in the
working memory component of the model, rather than in rein-
forcement learning or in choice selection. We next investigated
whether positive or negative symptoms of schizophrenia im-
pacted any aspect of behavior. Based on prior work (Waltz et al.,
2007, 2011), we had hypothesized that negative symptom severity
might be related to the WM parameters. Correlations between
symptoms and fit model parameters, as well as PCA components
or the MCCB working memory measure, yielded no significant
associations (BPRS, BNSS, and SANS scales; all p values $ 0.1;
Spearman ! # 0.24). This lack of association with negative symp-
toms might reflect the fact that the current task more closely
relates to the sort of rule-based working memory process that
would involve lateral prefrontal cortex, whereas prior associa-
tions with negative symptoms involved representing specific re-
ward values for each stimulus or action, functions attributed to
more limbic portions of prefrontal cortex hypothesized to be
related to negative symptoms, such as orbitofrontal cortex (Gold
et al., 2012).

We also investigated the effects of drug dose on performance.
We found a significant correlation between a Haloperidol equiv-
alent dose and RL learning rate parameter "RL (Spearman ! ! "
0.37; p ! 0.009) as well as error neglect parameter pers (Spearman
! ! 0.46; p ! 0.001), indicating more error neglect and slower
learning for higher antipsychotic doses. Importantly, there was
no effect on the working memory capacity parameter (p ! 0.97)

or any other parameter (all p values $ 0.11). Finally, we found no
effect of duration of illness on any parameters.

Discussion
These behavioral and modeling analyses provide a new perspec-
tive on the genesis of reinforcement learning deficits in people
with schizophrenia. Our basic behavioral result that patients are
overall less able than controls to use feedback to guide optimal
response selection is consistent with many other reports in the
literature (Waltz and Gold, 2007; Polli et al., 2008; Murray et al.,
2008b; Somlai et al., 2011). Indeed, this body of behavioral work,
combined with functional neuroimaging evidence suggesting ab-
normalities in the signaling of prediction errors in both cortical
(Corlett et al., 2007) and striatal (Murray et al., 2008a; Koch et al.,
2010) regions and abnormal striatal dopamine (Abi-Dargham et
al., 1998; Howes et al., 2012), has led to a renewed focus on the
role of reward-related dopaminergic mechanisms in both the
positive and negative symptoms of schizophrenia (Kapur et al.,
2005; Howes and Kapur, 2009; Ziauddeen and Murray, 2010;
Deserno et al., 2013).

Our behavioral results and modeling strategy indicate, how-
ever, that learning impairments in SZ stem primarily from a core
deficit in working memory, which may be responsible for what
appears to be a reinforcement learning impairment. Specifically,
we found robust evidence that patients had reduced working
memory capacity, as well as faster working memory decay, cou-
pled with normal reinforcement learning rates. This was observ-
able in terms of a stronger detrimental effect of set size on
learning in patients than in controls, together with a diminished
effect of set size on reaction time. Assuming that the increased
reaction time with set size arises from greater taxing of WM pro-
cesses, the latter result is convergent with the modeling finding,
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Figure 4. Learning curves and model simulations. Left, Empirical data per group (SZ, patients; HC, healthy controls, dashed lines). Middle, RLWM model simulation. Right, RL model simulation
(# rule learning model including undirected noise, forgetting, and perseveration mechanisms). Learning curves indicate the probability of a correct response at the nth presentation of a single
stimulus (stim). For each subject’s fitted parameters, one set of learning curves was obtained by averaging over 100 simulations of the model with those parameters. Overall learning curves were
then obtained by averaging across subjects.
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Only working memory is impaired
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the groups in the effect of iteration number. These results are
consistent with previous evidence suggestive of a role for WM in RL
deficits in SZ. To separate more explicitly the effects of working
memory, we fit subjects’ data with reinforcement learning models.

Model fitting and model comparisons (see Materials and
Methods) confirmed that subjects’ learning was best represented
by a mixture of two separate processes, one learning slowly and
incrementally for all stimuli and the other storing information
rapidly but with capacity limitations.

We next investigated the values of parameters obtained to
confirm that they produced values for which the model was valid.
First, the model fitting was successful in recovering two distinct
processes. Indeed, across all subjects, the mean fit learning rate
for the RL process was 0.084 (SD, 0.25) compared with the fixed
learning rate of 1 for the WM memory process (Fig. 3). The mean
fit decay rate for the RL process was 0.096 (SD, 0.21) compared
with 0.37 (SD, 0.21) for the WM process (binomial test, p !
10"11). This shows that the two modules had distinct learning
dynamics, slow accumulation and nearly no forgetting for RL and
fast learning but stronger forgetting for WM. Furthermore, both
processes were indeed used: average WM reliability was #0.83
$/" 0.24, showing that it was efficiently used when a stimulus
was stored, but capacity was found mostly within the two to four
range (consistent with the WM literature), showing that RL was
increasingly used to compensate for increasing failure of WM
in higher set sizes when capacity was exceeded. Second, it is
interesting to note that negative feedback was strongly ne-
glected, as indicated by the high value of the perseveration
parameter. Figure 4 shows simulation of the RLWM model
with fitted parameters, as well as with the best-fitting pure RL
models (see Material and Methods). This indicates that al-
though both models can account for the qualitative effect of
slower learning curves for higher set sizes, RLWM captures
much better the learning dynamics exhibited in different ses-
sions for each group.

We have shown that the recovered parameters are reasonable
within the model hypothesis and that the fit model can ade-
quately account for observed behavior. This allowed us next to
use the model to better understand subjects’ individual behaviors
by summarizing individual differences into meaningful model
parameters and comparing them across groups. Since most fit
parameter distributions were non-normally distributed (see Ma-
terials and Methods), we compared results across groups with a
nonparametric unpaired test (Wilcoxon rank sum test). We
found (Fig. 3A) that both working memory-specific parameters
were impaired in SZ compared with HC: patients showed lower
working memory capacity (median of two vs three for controls;
p % 10"4) and more forgetting in WM (!WM, p ! 0.005). Fur-
thermore, the reliance on WM use was lower in SZ (Fig. 3C; "WM,
p ! 0.04). The parameter accounting for neglect of error infor-
mation (or perseveration) in both WM and RL was significantly
stronger in patients than controls (Fig. 3C; pers, p ! 0.001). In
contrast, RL-specific parameters showed no difference between
groups (Fig. 4B; #, !RL, p & 0.3). The same was true of the noise
parameter, $ (Fig. 3D; p ! 0.25), though undirected noise was
marginally higher for patients (%, p ! 0.06).

To investigate further the role of the different processes sum-
marized by the fit model parameters, we performed a principal
component analysis (PCA) on the z-scored fit parameters. We
investigated the first two components, which accounted for 52%
of the variance, and compared them to the MCCB working mem-
ory domain measure as an established measure of working mem-
ory performance. The first component loaded only on RL
parameters (Fig. 3E) and undirected noise, did not differ signifi-
cantly between groups (p ! 0.49; t ! 0.69), and did not relate to
a direct measure of WM (see Materials and Methods; " ! 0.13;
p ! 0.21). On the contrary, the second component loaded on all
WM parameters (Fig. 3E) and noise parameters, with higher
value corresponding to lower capacity, higher forgetting, less
WM use, and more perseveration. This encompasses all aspects of
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The role of dopamine

Schultz et al., 1997 Science, Kravitz et al., 2012 Nature
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Go and nogo learning

Frank et al., 2004 Science
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OpAL

Collins and Frank Psych Review 2014

• Critic	update:
• dt =	rt – Qt(s,	a)
• Qt+1(s,a)	=	Qt (s,a)	+	aC dt

• Actor	update:
• Gt+1(s,a)	=	Gt(s,a)	+	aG x	(+	d)	x	Gt(s,a)
• Nt+1(s,a)	=	Nt(s,a)	+	aN x	(- d)	x	Nt (s,a)

• Actor	choice
• Act(s,a)	=	bG G(s,a)		- bN N(s,	a)
• P(a	|	s)	=	 softmax(Act(s,a))

• RT:
• Logistic	function	of	Actor
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Effects OpAL captures

‣ Learning 
‣ Performance 
‣ Vigor 
‣ Interactions
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Mood as generalization / momentum

Eldar et al., 2016 TICS

momentum. For instance, initial increases in fruit availability may indicate that spring is coming
and that further increases are probable. In such a case, a positive mood would represent
inference of a positive momentum – which would, in turn, bias perception of subsequent rewards
upwards. Because rewards would then be perceived as better than they really are, expectations
would be updated upwards quickly and would catch up with rising rewards. Similarly, if reward
availability is decreasing in an environment (e.g., winter is coming), then a negative mood leads to
rewards being perceived as less good than they actually are (even though increasingly rare
rewards still result in positive RPEs) and expectations will catch up with declining rewards,
allowing behavior to be quickly adjusted (e.g., hibernate). In accordance with this idea, the
relationship between mood and reward perception suggested by the recent literature can be
formally derived as statistical inference of average reward and its momentum (Box 2 ).

From Function to Dysfunction
Identifying the function of mood points to how it might be compromised, potentially leading to
maladaptive behavior. The proper function of mood, as we delineate, increases the efficiency of
learning about the environment when emotional reactions to changes in reward are appropriate
in intensity and duration. Positive or negative moods maximize their usefulness by persisting only
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Figure I. Probabilistic Kalman–Filter [80] Models of the Environment. The reward outcome r at time-step t is
sampled from a normal distribution whose mean vst is specific to the current state. (A) For a particular state, depicted here,
changes in the mean follow a random walk with normally distributed noise. (B) A general environmental factor affects
multiple states. At each time-step t, a general factor gt is sampled from a normal distribution whose mean is zero, and is
then added to multiple state means (vst ). (C) Changes in reward follow an underlying momentum. The mean reward vst of a
state is sampled from a normal distribution whose mean is the sum of the previous mean vst!1 and the current momentum
mt. Changes in momentum follow a random walk.

20 Trends in Cognitive Sciences, January 2016, Vol. 20, No. 1

Vt(s) = Vt�1(s) + ↵(rt � Vt�1(s))
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momentum. For instance, initial increases in fruit availability may indicate that spring is coming
and that further increases are probable. In such a case, a positive mood would represent
inference of a positive momentum – which would, in turn, bias perception of subsequent rewards
upwards. Because rewards would then be perceived as better than they really are, expectations
would be updated upwards quickly and would catch up with rising rewards. Similarly, if reward
availability is decreasing in an environment (e.g., winter is coming), then a negative mood leads to
rewards being perceived as less good than they actually are (even though increasingly rare
rewards still result in positive RPEs) and expectations will catch up with declining rewards,
allowing behavior to be quickly adjusted (e.g., hibernate). In accordance with this idea, the
relationship between mood and reward perception suggested by the recent literature can be
formally derived as statistical inference of average reward and its momentum (Box 2 ).

From Function to Dysfunction
Identifying the function of mood points to how it might be compromised, potentially leading to
maladaptive behavior. The proper function of mood, as we delineate, increases the efficiency of
learning about the environment when emotional reactions to changes in reward are appropriate
in intensity and duration. Positive or negative moods maximize their usefulness by persisting only
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rewards still result in positive RPEs) and expectations will catch up with declining rewards,
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and that further increases are probable. In such a case, a positive mood would represent
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upwards. Because rewards would then be perceived as better than they really are, expectations
would be updated upwards quickly and would catch up with rising rewards. Similarly, if reward
availability is decreasing in an environment (e.g., winter is coming), then a negative mood leads to
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and that further increases are probable. In such a case, a positive mood would represent
inference of a positive momentum – which would, in turn, bias perception of subsequent rewards
upwards. Because rewards would then be perceived as better than they really are, expectations
would be updated upwards quickly and would catch up with rising rewards. Similarly, if reward
availability is decreasing in an environment (e.g., winter is coming), then a negative mood leads to
rewards being perceived as less good than they actually are (even though increasingly rare
rewards still result in positive RPEs) and expectations will catch up with declining rewards,
allowing behavior to be quickly adjusted (e.g., hibernate). In accordance with this idea, the
relationship between mood and reward perception suggested by the recent literature can be
formally derived as statistical inference of average reward and its momentum (Box 2 ).

From Function to Dysfunction
Identifying the function of mood points to how it might be compromised, potentially leading to
maladaptive behavior. The proper function of mood, as we delineate, increases the efficiency of
learning about the environment when emotional reactions to changes in reward are appropriate
in intensity and duration. Positive or negative moods maximize their usefulness by persisting only
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until expectations are fully updated in accordance with changes in rewards. Indeed, happiness
eventually returns to a baseline level even following highly significant changes in circumstances
[62], including winning the lottery [63], whereas excessive happiness can induce maladaptive
behavior [64,65]. This homeostasis crucially depends on appropriate updating of expectations,
that is, on the integrity of learning processes. If, for instance, expectations are not updated
downwards following outcomes that are worse than expected, encountering the same out-
comes again would continue to generate negative surprises indefinitely, inducing a negative
mood. In fact, in environments with even modest amounts of variability or randomness, it suffices
that the rate of learning (ht in Box 2) is lower for negative than for positive surprises in order for
overly optimistic expectations to develop. As a result, the frequency and magnitude of negative
surprises would increase, leading to low mood (Figure 2A). Indeed, low serotonin function, which
has been associated with impaired learning from negative outcomes [66], is linked to both
depression and risk-taking behavior [67], two co-occurring conditions [68 –71] that may stem
from lower negative learning rates and consequent overly optimistic expectations [30]. Interest-
ingly, in the general population, positive mood and risk aversion predominate [72,73], possibly
indicating higher learning rates for negative than for positive surprises, which could reflect the
greater importance to survival of avoiding negative outcomes.

More generally, if a negative mood is too intense or persists for too long, positive feedback
dynamics can exacerbate the situation. Bad mood will result in subsequent outcomes being
perceived as worse than they really are, leading to further negative surprises that induce further
decreases in mood, which in turn will make outcomes seem even worse, and so on (Figure 2B).
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Figure 2. Schematic of Possible Mood Dysfunctions. (A) (Top) Given a similar rate of learning in response to positive
and negative outcomes, an environment in which positive and negative outcomes are equally likely leads to neutral
expectations and a neutral mood on average. (Bottom) A lower rate of learning from negative outcomes leads to optimistic
expectations and therefore larger negative prediction errors and persistent negative mood, a symptom seen in major
depressive disorder. (B) Escalatory positive-feedback dynamics might turn mood into a ‘self-fulfilling prophecy’, leading to
emotional instability, a major symptom of bipolar disorder. Positive surprises improve mood, biasing perception of
outcomes upwards, thereby increasing the frequency and magnitude of further positive surprises. Optimistic expectations
develop owing to the biased perception of outcomes. Mood stabilizes once expectations catch up with perceived
outcomes, but subsequent outcomes, whose perception in now unbiased, then tend to fall short of optimistic expectations.
Thus, negative surprises follow, thereby diminishing mood and biasing perception of outcomes downward. Similar positive-
feedback dynamics then engender pessimistic expectations, setting the stage for the cycle to repeat, oscillating between
good and bad mood indefinitely even if there are no changes in the actual distribution of outcomes.
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þ 4.0%±1.0%, n¼ 45, t44¼ 4.1, Po10# 4, t test; there were no
significant differences between the groups or between game 2 and
game 3). We therefore focused our subsequent analyses on the
first and second game, that is, the games immediately before and
immediately after the WoF draw.

We next examined whether the degree to which the WoF
outcome affected feeling was correlated with susceptibility to
mood instability. To this end, participants completed the
International Personality Item Pool13 version of the Hypomanic
Personality Scale14 (HPS)—a self-report measure that has been
shown to correlate with frequency of good and bad moods15, as
well as with risk of developing bipolar disorder16. A higher HPS
score (indicating less stable mood) was associated with a greater
change in feeling following the WoF draw (Fig. 1c; n¼ 56,
F1,52¼ 8.5, P¼ 0.005, ANCOVA HPS$WoF interaction), but
accounting for differences in baseline mood level (that is, before
the WoF draw) weakened this result to trend level (n¼ 56,
F1,52¼ 3.6, P¼ 0.06, ANCOVA HPS$WoF interaction).

The effect of the WoF on perception of subsequent outcomes.
To examine whether the WoF draw affected not only participants’
emotional state, but also their subsequent valuations, in a final
test game participants chose between slot machines that had
appeared before and after the WoF draw, and had objectively
similar reward probabilities (Fig. 1a). As predicted, participants
with high HPS scores who won the draw favoured slot machines
that they had encountered after the draw, whereas participants
with high HPS scores who lost the draw favoured slot machines
encountered before the draw. In contrast, participants with low

HPS scores were not biased by the outcome of the draw. This
result was true both for participants who only performed the
behavioural experiment (Fig. 2a; n¼ 30, F1,26¼ 4.1, P¼ 0.05,
ANCOVA HPS$WoF interaction), and for a separate group of
participants who performed the experiment in a Magnetic
Resonance Imaging (MRI) scanner (Fig. 2b; n¼ 26, F1,22¼ 4.2,
P¼ 0.05, ANCOVA HPS$WoF interaction; see Supplementary
Fig. 1 for the combined data). Furthermore, this result could not
be explained by an effect of the WoF outcome on the balance
between exploration and exploitation (see Methods for details).
Interestingly, the WoF draw did not bias participants’ explicit
valuations of how likely each machine was to yield reward
(n¼ 56, F1,52¼ 0.02, P¼ 0.88, ANCOVA HPS$WoF interac-
tion). This is consistent with our hypothesis that the behavioural
bias reflected biased perception of the subjective value of reward,
not the frequency of reward.

If biased test-game choices indeed resulted from biased
perception of reward, we should expect to see a corresponding
bias in neural responses to rewards in the striatum—a brain area
where blood-oxygen-level dependent (BOLD) signals have been
shown to reflect a reward prediction error signal that drives
learning and guides future choices17–25 (Fig. 2c). To test for this,
we compared striatal BOLD responses with slot machine rewards
before and after the WoF draw. Higher HPS score was associated
with stronger BOLD responses to rewards in the second game for
participants who won the WoF draw, and weaker responses to
rewards for participants who lost the draw (Fig. 2d; n¼ 25,
F1,21¼ 10.1, Po0.005, ANCOVA HPS$WoF interaction). This
interaction between HPS score and WoF outcomes was also
significant (n¼ 25, t1,21¼ 2.8, Po0.05, robust regression) under a
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Figure 2 | Test-game slot-machine choices and striatal response to reward, as a function of HPS score and WoF outcome. (a,b ) Difference between
percent choices of post-WoF slot machines and pre-WoF slot machines, in the behavioural experiment (a, n¼ 30 participants, F1,26¼4.1, P¼0.05,
ANCOVA HPS$WoF interaction) and in the fMRI experiment (b , n¼ 26, F1,22¼4.2, P¼0.05, ANCOVA HPS$WoF interaction). (c) A striatal region of
interest was defined at the group level as those voxels within the anatomical boundaries of the striatum that responded more to reward than to no-reward
outcomes throughout the experiment (Po0.0001 uncorrected, GLM). Y and Z indicate MNI coordinates. (d) Striatal response to reward in game 2 (which
followed the WoF draw) compared with game 1, as a function of HPS (GLM), divided according to the outcome of the WoF draw (total n¼ 25). HPS scores
are on a scale of 1 (least hypomanic) to 5 (most hypomanic). The difference between the Win and Lose groups (F1,21¼ 10.1, Po0.005, ANCOVA
HPS$WoF interaction) remained statistically significant when tested using robust regression (t1,21¼ 2.8, Po0.05), indicating that it could not be explained
by the effect of outliers.
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What makes you happier, finding a stray dime when in a
good mood, or in the middle of a bad day? Outcomes
may be subjectively perceived as better when one is in

a good mood1. But unexpected outcomes can also change one’s
mood2,3. This would result in a positive feedback loop, in which
improved outcomes improve mood, which then further improves
perceived outcomes. Conversely, good outcomes could devalue
subsequent outcomes due to diminishing subjective value (think
about finding a dime right after winning the lottery). This latter
possibility, which is consistent with prospect theory in
behavioural economics4,5, suggests, in contrast, negative
feedback dynamics. While negative feedback typically promotes
stability, positive feedback constitutes a principal cause of
instability throughout the natural world6–11. Accordingly, we
hypothesized that individuals with a positive feedback
relationship between emotional state and outcomes would tend
to suffer from instability of mood, whereas negative feedback
would be associated with emotionally stability.

We thus set forth to test the effect of a large unexpected
outcome on emotional state and on the valuation of subsequent
outcomes. Fifty-six human participants played a game in which
they chose between pairs of slot machines that differed in
probability of dispensing small (25 cent) rewards, learning by
trial-and-error which machine is more rewarding (Fig. 1a). Then,
to induce a change in emotional state, we held a wheel of fortune
(WoF) draw in which participants either won or lost a relatively
large sum ($7) at chance. Following this, participants played two
more slot machine games, each with a new set of slot machines. If
an unexpected outcome induces an emotional state, which then
feeds back positively onto the perception of outcomes, winning

the WoF draw should make participants happier, and, in
addition, they should value rewards received after the draw more
highly than those received before the draw. Critically, for a
positive feedback loop to ensue, subjective valuations must
increase above and beyond any shift in reference point that may
diminish valuations of subsequent rewards4. Similarly,
participants who lose the draw should become less happy and
value subsequent rewards less highly.

Our results show that an outcome that affects emotional state
also biases the valuation of subsequent outcomes, but only in
participants who report a tendency to mood instability. A
computational model suggests that such a bidirectional interac-
tion between perceived outcomes and emotional state may, in
fact, generate mood instability.

Results and Discussion
The effect of wheel of fortune outcomes on emotional state. To
evaluate emotional state, at 3 points during each slot-machine
game we asked participants to rate how they currently feel. The
data indicated that the result of the WoF draw significantly
affected participants’ feeling during the subsequent slot-machine
game (mean mood change: þ 0.38±0.24 for participants who
won the WoF draw versus " 0.97±0.16 for participants who lost
the WoF draw, n¼ 56, t54¼ 4.6, Po10" 5, t test), though by
game 3 this effect was no longer significant (n¼ 56, t54¼ 1.7,
P¼ 0.09, t test, for difference between the third and first games;
Fig. 1b). In addition, the WoF draw resulted in an increase in
pupil diameter, indicating increased emotional arousal12 (mean
diameter change across both Win and Lose groups:
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Figure 1 | Experimental design and emotional response. (a) The experiment included three slot-machine games, a wheel of fortune (WoF) draw, and a
test game. Half of the participants won $7 in the WoF draw and half lost $7. In the test phase, participants were asked to choose between slot machines
that they had learned about before and after the draw. Reward obtained during the test game was not revealed until the end of the experiment so as to test
previously learned valuations of the slot machines. (b ) Mean self-reported feeling during the three slot-machine games, on a scale of 5 (completely happy)
to " 5 (completely unhappy). Winning the WoF draw improved mood, whereas losing the draw had the opposite effect (n¼ 56, t54¼4.6, Po10" 5, t test).
(c) Mean self-reported feeling during the first and second slot-machine games, as function of HPS score. Participants were divided into equal-sized groups
using a median split on HPS score. Participants with higher HPS scores were more strongly affected by the WoF draw (n¼ 56, F1,52¼8.5, P¼0.005,
ANCOVA HPS$WoF interaction). Error bars, s.e.m;n¼ 56 participants, including data from both behavioural and fMRI experiments.
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þ 4.0%±1.0%, n¼ 45, t44¼ 4.1, Po10# 4, t test; there were no
significant differences between the groups or between game 2 and
game 3). We therefore focused our subsequent analyses on the
first and second game, that is, the games immediately before and
immediately after the WoF draw.

We next examined whether the degree to which the WoF
outcome affected feeling was correlated with susceptibility to
mood instability. To this end, participants completed the
International Personality Item Pool13 version of the Hypomanic
Personality Scale14 (HPS)—a self-report measure that has been
shown to correlate with frequency of good and bad moods15, as
well as with risk of developing bipolar disorder16. A higher HPS
score (indicating less stable mood) was associated with a greater
change in feeling following the WoF draw (Fig. 1c; n¼ 56,
F1,52¼ 8.5, P¼ 0.005, ANCOVA HPS$WoF interaction), but
accounting for differences in baseline mood level (that is, before
the WoF draw) weakened this result to trend level (n¼ 56,
F1,52¼ 3.6, P¼ 0.06, ANCOVA HPS$WoF interaction).

The effect of the WoF on perception of subsequent outcomes.
To examine whether the WoF draw affected not only participants’
emotional state, but also their subsequent valuations, in a final
test game participants chose between slot machines that had
appeared before and after the WoF draw, and had objectively
similar reward probabilities (Fig. 1a). As predicted, participants
with high HPS scores who won the draw favoured slot machines
that they had encountered after the draw, whereas participants
with high HPS scores who lost the draw favoured slot machines
encountered before the draw. In contrast, participants with low

HPS scores were not biased by the outcome of the draw. This
result was true both for participants who only performed the
behavioural experiment (Fig. 2a; n¼ 30, F1,26¼ 4.1, P¼ 0.05,
ANCOVA HPS$WoF interaction), and for a separate group of
participants who performed the experiment in a Magnetic
Resonance Imaging (MRI) scanner (Fig. 2b; n¼ 26, F1,22¼ 4.2,
P¼ 0.05, ANCOVA HPS$WoF interaction; see Supplementary
Fig. 1 for the combined data). Furthermore, this result could not
be explained by an effect of the WoF outcome on the balance
between exploration and exploitation (see Methods for details).
Interestingly, the WoF draw did not bias participants’ explicit
valuations of how likely each machine was to yield reward
(n¼ 56, F1,52¼ 0.02, P¼ 0.88, ANCOVA HPS$WoF interac-
tion). This is consistent with our hypothesis that the behavioural
bias reflected biased perception of the subjective value of reward,
not the frequency of reward.

If biased test-game choices indeed resulted from biased
perception of reward, we should expect to see a corresponding
bias in neural responses to rewards in the striatum—a brain area
where blood-oxygen-level dependent (BOLD) signals have been
shown to reflect a reward prediction error signal that drives
learning and guides future choices17–25 (Fig. 2c). To test for this,
we compared striatal BOLD responses with slot machine rewards
before and after the WoF draw. Higher HPS score was associated
with stronger BOLD responses to rewards in the second game for
participants who won the WoF draw, and weaker responses to
rewards for participants who lost the draw (Fig. 2d; n¼ 25,
F1,21¼ 10.1, Po0.005, ANCOVA HPS$WoF interaction). This
interaction between HPS score and WoF outcomes was also
significant (n¼ 25, t1,21¼ 2.8, Po0.05, robust regression) under a
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Figure 2 | Test-game slot-machine choices and striatal response to reward, as a function of HPS score and WoF outcome. (a,b ) Difference between
percent choices of post-WoF slot machines and pre-WoF slot machines, in the behavioural experiment (a, n¼ 30 participants, F1,26¼4.1, P¼0.05,
ANCOVA HPS$WoF interaction) and in the fMRI experiment (b , n¼ 26, F1,22¼4.2, P¼0.05, ANCOVA HPS$WoF interaction). (c) A striatal region of
interest was defined at the group level as those voxels within the anatomical boundaries of the striatum that responded more to reward than to no-reward
outcomes throughout the experiment (Po0.0001 uncorrected, GLM). Y and Z indicate MNI coordinates. (d) Striatal response to reward in game 2 (which
followed the WoF draw) compared with game 1, as a function of HPS (GLM), divided according to the outcome of the WoF draw (total n¼ 25). HPS scores
are on a scale of 1 (least hypomanic) to 5 (most hypomanic). The difference between the Win and Lose groups (F1,21¼ 10.1, Po0.005, ANCOVA
HPS$WoF interaction) remained statistically significant when tested using robust regression (t1,21¼ 2.8, Po0.05), indicating that it could not be explained
by the effect of outliers.
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more conservative analysis that accounts for potential
outliers26,27, as well as when controlling for differences in the
balance between exploration and exploitation (see methods for
details). Moreover, a whole-brain analysis revealed a similar bias
in the BOLD response to reward in reward-sensitive areas outside
of the striatum, and in particular in the ventromedial prefrontal
cortex (Supplementary Fig. 2). However, there was no such bias
in the BOLD response to the appearance of task stimuli (n¼ 25,
P40.05, ANCOVA HPS"WoF interaction; see Methods). Thus,
the post-WoF draw bias was not due to a general effect of
emotional state on BOLD responses (for example, due to global
effects on arousal or attention), but rather was specific to the
valuation of reward.

In sum, our two experiments showed that in participants
whose mood tends to be less stable, a large unexpected outcome
affected emotional state, and biased reward perception in the
same direction. In contrast, participants with more stable mood
showed no such positive feedback interaction between unex-
pected outcomes (and their associated mood) and valuation of
future rewards.

A model of the interaction between mood and learning. We
next formalized the feedback interaction between emotional state
and reward perception that was evident in our experiments in a
reinforcement-learning model28 in which positive surprises

(prediction errors) improve mood and negative surprises
worsen mood (see Methods for model equations). In line with
previous work29,30, ‘mood’ was formalized as a running
average of recent outcomes. We note that this implementation
allows mood both to change gradually due to the aggregated
effect of multiple outcomes as is considered typical for mood, or
more rapidly, in response to a single highly significant outcome
(as is more characteristic of emotions31). Critically, in our model,
the effect of mood on subjective perception of reward was
controlled by a parameter f. If f¼ 1 mood does not bias reward
perception. With f41, mood exerts positive feedback. That is,
reward is perceived as larger in a good mood and as smaller in a
bad mood. Conversely, 0ofo1 corresponds to negative feedback,
with reward perceived as smaller in a good mood and as larger in
a bad mood.

To test the validity of the model, we assessed how well it
explained participants’ trial-to-trial choices and self-reported
feeling throughout the experiment, as compared with two
alternative models: a model in which outcomes do not affect
mood (‘no mood’ model) and a model in which outcomes affect
mood, but mood does not affect perception of outcomes (‘no
mood bias’ model). As shown in Fig. 3a, for participants with
high HPS scores, the full model outperformed both the ‘no mood’
model and the ‘no mood bias’ model. This indicates that both the
effect of outcomes on mood and the effect of mood on outcomes
played a role in determining the behaviour of participants that are
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Figure 3 | Model-based analysis of experimental data using a reinforcement-learning model of mood. (a) Comparison of the mood model to the
alternative ‘no mood’ and ‘no mood bias’ models in terms of each model’s ability to explain participants’ behaviour. Positive log Bayes factors favour the full
mood model, and negative log Bayes factors favour the alternative model. Participants (n¼ 56) were divided into equal-sized groups using a median split on
HPS score. Error bars: bootstrap 95% confidence intervals. **Po10#6, *Po0.05, NS, P40.5, bootstrap test. (b) Model-estimated mood bias (plotted on a
log scale) as compared with HPS score. The more participants were susceptible to mood instability, as measured by the HPS, the more the reward-
perception bias inferred by the model tended to the positive (that is, 41; n¼ 56, Pearson’s r¼0.3, Po0.05). (c) Participants’ model-estimated mood bias
(log scale) was correlated with the degree to which striatal activity followed prediction error signals that are attributable to the effect of mood on
perception of reward as compared with standard reinforcement learning prediction errors (n¼ 25, Perason’s r¼0.43, Po0.05). Negative t-values reflect
anti-correlation between the additional contribution of the positive-feedback model’s mood-induced biases (above and beyond the no-mood model
prediction errors) and striatal activations, as would be expected for participants with a negative feedback relationship between mood and reward
perception. (d) Within-participant correlations between mood as estimated by the model and the participant’s self-reported feeling. The mean correlation
(Pearson’s r¼0.31; solid line) was positive (n¼ 54, t53¼4.5, Po10# 5). Dashed line: s.e.m.
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Supporting Information
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Pruning
We here replicate the key findings from ref. 1 on the present
dataset. The results of these analyses show that the pruning +
loss model gives the most parsimonious account of the data. This
pruning + loss model is therefore used as the baseline model for
the analyses presented in the main text. That is, all analyses
presented in the main text control for the effects described here
and are present above and beyond them.

Methods.We first adapted the models from ref. 1 for the modified
task design. Subjects had to emit an entire action sequence at
once and the models therefore had to specify distributions over
entire action sequences. That is, rather than choosing from one
of the two actions d times, subjects choose one of the entire set
of 2d available sequences, that is, we write the probability of
emitting sequence ai as

pðaÞ= expðβQðaÞÞP
bexpðβQðbÞÞ

; [S1]

where β determines the steepness of the softmax function.
The Q value was defined as follows. For model “lookahead”

(i.e., the optimal choice) it was the sum of all d rewards rðaÞ en-
countered when emitting that sequence:

QloðaÞ=
Xd

j=1
rjðaÞ: [S2]

The “discount” model captured general pruning with a single
discount parameter γ:

QdðaÞ=
Xd

j=1

ð1− γÞj−1rjðaÞ: [S3]

The “pruning” model incorporated two separate discount pa-
rameters γG and γS:

QpðaÞ=
Xd

j=1

ð1− γGÞ
x−1ð1− γSÞ

y−1rjðaÞ; [S4]

with x and y counting the number of times no large loss or a large
loss has been encountered up to that point in that sequence.
That is, a probabilistic reduction in looking beyond a large loss
is captured by a higher discount rate (higher γ, lower 1− γ) after
a large loss. The “loss-sensitive” model additionally allowed the
values of the rewards r to be fitted separately for each subject (β
was fixed at unity). This ensured that any pruning was not simply
due to a relatively stronger weighting of losses compared with
rewards. The reader is referred to ref. 1 for a detailed discussion
of these models.

Results. Subjects reduced task complexity by “pruning” heavily
when searching the tree of possible decision sequences (1).
Briefly, subjects had a strong tendency to disregard outcomes
lying distant from the salient losses of −70 points. An indication
of this is seen in the raw choice data (cf. figure 3f in ref. 1): For
problems where the optimal solution did not demand a transition
through a large loss (panels with black borders in Fig. S2), sub-
jects solved over 70% (including the training problems) correctly.

However, when the optimal solution did involve a transition
through a large loss (panels with red borders in Fig. S2), subjects
solved only just over 30% of the problems correctly.
To show that a tree search termination process is able to ac-

count for the data, we fitted reinforcement-learning models to the
choices. We first reestablished that the avoidance of losses cor-
responds to reflexive pruning (1). Fig. S1A shows the fit to the
data of the various models. The higher this measure, the more
likely subjects’ choices are under the model. The first model
lookahead assessed whether subjects effectively performed the
task. It assumes that subjects evaluate the entire decision tree
and then choose one of the sequences with a probability pro-
portional to the total reward for that action sequence. This
model fits the data well (explaining 30% of the variance,
pseudo R2; range 0.14–0.57), showing that subjects were able to
perform the task.
Capturing the approximations subjects might have made sub-

stantially and significantly improved the model fits. First, a model
that took into account that subjects might not evaluate the full
depth of the decision tree by allowing distant outcomes to be
weighed less than proximal ones (model discount) captured the
data better. Second, there was evidence that subjects differentially
terminated tree searches after large losses. The model pruning
allowed for outcomes after large losses to be down-weighted
differently from outcomes occurring distant from other tran-
sitions and improved the fit further. Third, to control for in-
terindividual variation in the weighting of the reward and loss
outcomes themselves we fitted model loss + pruning. This yielded
a further improvement in fit (Fig. S1A). None of the fit im-
provements was due to overfitting: The group-level Bayes factor,
which penalizes models for being more complex, improved (Fig.
S1B), arguing that the models capture the data increasingly
better. The loss + pruning model explained 38% of the variance
(pseudo R2, range 0.20–0.68).
Note that thesemodels do not capture progressive learning of the

task itself. However, because the stochastic memoization models
capture the entire learning process, we here fitted these models to
the entire dataset (including the training phase). This explains the
overall lower fits compared with our previous report (1).
We then examined the parameters of the model pruning + loss.

The correlation coefficients between subjects’ inferred rein-
forcement sensitivity and the true values of the reward was very
high (0.9942 ± 0.0026). The discount rate after large losses was
steeper in 33/37 subjects, suggesting differential down-weighting
of outcomes distant to large losses. These findings replicate the
central finding in ref. 1, according to which subjects prune de-
cision trees in a reflexive, Pavlovian manner when encountering
a large loss across an independent dataset. Critically, the pruning
effect changes little when controlling for individual variation in
reward and loss sensitivity (model loss + pruning).

Optimal Fragmentation
To identify the optimal fragmentation for each state–depth
problem, we first found the optimal sequence (i.e., the one
identified as the best one by model lookahead). We then ex-
amined all possible fragmentations and for each fragmentation
measured the maximal earnings and an assumed computational
cost. For the latter, we assessed the number and length of
branches of the subtree that must be evaluated—thus, the cost
for a subtree of depth d is d · 2d. For instance, for depth d= 3,
there are 23 = 8 branches, each of length d= 3. The fragmenta-
tion in Fig. 1D, which fragmented a tree of depth 3 into two trees

Huys et al. www.pnas.org/cgi/content/short/1414219112 1 of 5
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with x and y counting the number of times no large loss or a large
loss has been encountered up to that point in that sequence.
That is, a probabilistic reduction in looking beyond a large loss
is captured by a higher discount rate (higher γ, lower 1− γ) after
a large loss. The “loss-sensitive” model additionally allowed the
values of the rewards r to be fitted separately for each subject (β
was fixed at unity). This ensured that any pruning was not simply
due to a relatively stronger weighting of losses compared with
rewards. The reader is referred to ref. 1 for a detailed discussion
of these models.

Results. Subjects reduced task complexity by “pruning” heavily
when searching the tree of possible decision sequences (1).
Briefly, subjects had a strong tendency to disregard outcomes
lying distant from the salient losses of −70 points. An indication
of this is seen in the raw choice data (cf. figure 3f in ref. 1): For
problems where the optimal solution did not demand a transition
through a large loss (panels with black borders in Fig. S2), sub-
jects solved over 70% (including the training problems) correctly.

However, when the optimal solution did involve a transition
through a large loss (panels with red borders in Fig. S2), subjects
solved only just over 30% of the problems correctly.
To show that a tree search termination process is able to ac-

count for the data, we fitted reinforcement-learning models to the
choices. We first reestablished that the avoidance of losses cor-
responds to reflexive pruning (1). Fig. S1A shows the fit to the
data of the various models. The higher this measure, the more
likely subjects’ choices are under the model. The first model
lookahead assessed whether subjects effectively performed the
task. It assumes that subjects evaluate the entire decision tree
and then choose one of the sequences with a probability pro-
portional to the total reward for that action sequence. This
model fits the data well (explaining 30% of the variance,
pseudo R2; range 0.14–0.57), showing that subjects were able to
perform the task.
Capturing the approximations subjects might have made sub-

stantially and significantly improved the model fits. First, a model
that took into account that subjects might not evaluate the full
depth of the decision tree by allowing distant outcomes to be
weighed less than proximal ones (model discount) captured the
data better. Second, there was evidence that subjects differentially
terminated tree searches after large losses. The model pruning
allowed for outcomes after large losses to be down-weighted
differently from outcomes occurring distant from other tran-
sitions and improved the fit further. Third, to control for in-
terindividual variation in the weighting of the reward and loss
outcomes themselves we fitted model loss + pruning. This yielded
a further improvement in fit (Fig. S1A). None of the fit im-
provements was due to overfitting: The group-level Bayes factor,
which penalizes models for being more complex, improved (Fig.
S1B), arguing that the models capture the data increasingly
better. The loss + pruning model explained 38% of the variance
(pseudo R2, range 0.20–0.68).
Note that thesemodels do not capture progressive learning of the

task itself. However, because the stochastic memoization models
capture the entire learning process, we here fitted these models to
the entire dataset (including the training phase). This explains the
overall lower fits compared with our previous report (1).
We then examined the parameters of the model pruning + loss.

The correlation coefficients between subjects’ inferred rein-
forcement sensitivity and the true values of the reward was very
high (0.9942 ± 0.0026). The discount rate after large losses was
steeper in 33/37 subjects, suggesting differential down-weighting
of outcomes distant to large losses. These findings replicate the
central finding in ref. 1, according to which subjects prune de-
cision trees in a reflexive, Pavlovian manner when encountering
a large loss across an independent dataset. Critically, the pruning
effect changes little when controlling for individual variation in
reward and loss sensitivity (model loss + pruning).

Optimal Fragmentation
To identify the optimal fragmentation for each state–depth
problem, we first found the optimal sequence (i.e., the one
identified as the best one by model lookahead). We then ex-
amined all possible fragmentations and for each fragmentation
measured the maximal earnings and an assumed computational
cost. For the latter, we assessed the number and length of
branches of the subtree that must be evaluated—thus, the cost
for a subtree of depth d is d · 2d. For instance, for depth d= 3,
there are 23 = 8 branches, each of length d= 3. The fragmenta-
tion in Fig. 1D, which fragmented a tree of depth 3 into two trees
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problems where the optimal solution did not demand a transition
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model fits the data well (explaining 30% of the variance,
pseudo R2; range 0.14–0.57), showing that subjects were able to
perform the task.
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stantially and significantly improved the model fits. First, a model
that took into account that subjects might not evaluate the full
depth of the decision tree by allowing distant outcomes to be
weighed less than proximal ones (model discount) captured the
data better. Second, there was evidence that subjects differentially
terminated tree searches after large losses. The model pruning
allowed for outcomes after large losses to be down-weighted
differently from outcomes occurring distant from other tran-
sitions and improved the fit further. Third, to control for in-
terindividual variation in the weighting of the reward and loss
outcomes themselves we fitted model loss + pruning. This yielded
a further improvement in fit (Fig. S1A). None of the fit im-
provements was due to overfitting: The group-level Bayes factor,
which penalizes models for being more complex, improved (Fig.
S1B), arguing that the models capture the data increasingly
better. The loss + pruning model explained 38% of the variance
(pseudo R2, range 0.20–0.68).
Note that thesemodels do not capture progressive learning of the

task itself. However, because the stochastic memoization models
capture the entire learning process, we here fitted these models to
the entire dataset (including the training phase). This explains the
overall lower fits compared with our previous report (1).
We then examined the parameters of the model pruning + loss.

The correlation coefficients between subjects’ inferred rein-
forcement sensitivity and the true values of the reward was very
high (0.9942 ± 0.0026). The discount rate after large losses was
steeper in 33/37 subjects, suggesting differential down-weighting
of outcomes distant to large losses. These findings replicate the
central finding in ref. 1, according to which subjects prune de-
cision trees in a reflexive, Pavlovian manner when encountering
a large loss across an independent dataset. Critically, the pruning
effect changes little when controlling for individual variation in
reward and loss sensitivity (model loss + pruning).

Optimal Fragmentation
To identify the optimal fragmentation for each state–depth
problem, we first found the optimal sequence (i.e., the one
identified as the best one by model lookahead). We then ex-
amined all possible fragmentations and for each fragmentation
measured the maximal earnings and an assumed computational
cost. For the latter, we assessed the number and length of
branches of the subtree that must be evaluated—thus, the cost
for a subtree of depth d is d · 2d. For instance, for depth d= 3,
there are 23 = 8 branches, each of length d= 3. The fragmenta-
tion in Fig. 1D, which fragmented a tree of depth 3 into two trees
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 examined the distributions of units with significant correlations 
(Pearson’s correlation coefficients, P < 0.05; Fig. 5). Negatively corre-
lated units predominated positive ones in the ventral bank (Fisher’s 
exact test, P < 0.05) for offered reward (Rew; Fig. 5a), expected utility  
(Eutil; Fig. 5c) and chosen reward amount (Cho × Rew; Fig. 5e). 
For conflict in decision (Conf; Fig. 5g) and reaction time (Fig. 5h), 
positively correlated units dominated negative ones. For decision 
(Cho; Fig. 5d), units coding avoidance (Cho = 0) dominated units  
coding approach (Cho = 1). Thus, except for offered and chosen  
airpuff strength (Ave and Cho × Ave; Fig. 5b,f), units responding to 
multiple different variables (low Rew, low Eutil, low Cho × Rew; high 
Conf and high RT; Cho = 0) predominated over their counterparts in 
the ventral bank region. These variables corresponded to the motiva-
tionally negative variables that activated N-type units.

Microstimulation alters approach-avoidance decision-making
On the basis of these biased distributions, we reasoned that micro-
stimulation in this ventral bank zone might bias the monkeys’ 
decision-making toward avoidance decisions, whereas stimulation 
elsewhere in the sampled pACC region might have limited effect 
because of the balance between the N-type and P-type populations. 
To test this prediction, we microstimulated at 97 sites in the pACC of 
monkeys S and A, using 1-s-long trains of biphasic pulses that started 
at the onset of the visual cues (Fig. 1c). Each site was stimulated  
in successive daily Ap-Av (n = 97) and Ap-Ap (n = 31) sessions. Within 
individual sessions, we alternated stimulation-off and stimulation-on 
trials in blocks of 250 trials.

The effects of the microstimulation on the monkeys’ decision-
 making were markedly selective. Stimulation was effective almost 
exclusively during performance of the Ap-Av task; it almost exclusively 

produced an increase in avoidance decisions and it produced this 
effect almost exclusively for stimulation applied to the ventral bank of 
the cingulate sulcus (Figs. 6 and 7). Compared with the stimulation-
off trials (Fig. 6a), the slope of the decision boundary during the 
stimulation-on trials was shifted rightward and the number of avoid-
ance decisions was increased (Fig. 6b). To quantify the effect of the 
stimulation, we introduced a spatial smoothing method and used 
Fisher’s exact probability test (Online Methods). We defined effec-
tive sites as those for which stimulation significantly changed the 
 monkey’s decisions (P < 0.05) for at least 5% of all combinations of 
the two cues. Microstimulation in the ventral bank of the cingulate 
sulcus significantly increased avoidance choices for 16.6% of all 
cue combinations, most strongly for those indicating high airpuff 
strengths (Fig. 6c). Identically applied stimulation at the same site 
during Ap-Ap task performance did not induce any change in deci-
sion (Fig. 6d–f).

Of the 97 sites that we examined in the medial wall cortex, 15 sites 
were effective, 13 of which (86.7%) produced an increase in avoid-
ance and were in the ventral bank of the cingulate sulcus (Fig. 7a 
and Supplementary Fig. 9). To characterize the stimulation effects 
at these 13 effective sites, we accumulated all of the behavioral data 
(Supplementary Fig. 10) and, with the accumulated data, expressed 
the difference in decision-making between stimulation-on and 
 stimulation-off trials as t scores. The tendency for increased avoid-
ance in the Ap-Av task was positively correlated with the strength of 
the aversive airpuff indicated by the visual cues (Fig. 7b), but was 
unchanged in the Ap-Ap task (Fig. 7c). Reaction times were affected 
in both monkeys, most strongly in monkey S, and were, in both, 
larger for high-conflict decisions than for low-conflict decisions 
(Supplementary Fig. 11). In some experiments, we ran triple-session 
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Figure 6 Effects of pACC microstimulation on decision-making. (a–f) Microstimulation (70 MA) was delivered during cue period at a single site 
(indicated by asterisk in Fig. 7a) in monkey S as she performed single Ap-Av (a–c) and Ap-Ap (d–f) task sessions on consecutive days. Left panels of 
a, b, d and e show scatter plots of each decision for stimulation-off (a,d) and stimulation-on (b,e) trials. Blue crosses and red squares indicate choice 
of cross and square targets, respectively. The black line represents the session’s decision boundary estimated by logistic regression analysis. Light 
blue and orange lines indicate the 90% and 10% levels, respectively, for choices of cross target, estimated by the modeled data produced by the 
logistic regression. Right panels show the mean choices for these stimulation-off (a,d) and stimulation-on (b,e) trials, with decision boundaries shown 
as dotted lines (black, stimulation-off; white, stimulation-on). Data were smoothed by a square window (20% by 20% of the decision matrix). Black 
outlines enclose decisions with 5% to 95% probability of cross target choices. Shown in c and f are matrix plots of t scores demonstrating significant 
stimulation-induced increase in avoidance in the Ap-Av task (c) and lack of significant stimulation effect in the Ap-Ap task (f). The region outlined in 
black in c indicates a zone with significant effects (Fisher’s exact test, P < 0.05), which covered 16.6% of the entire data matrix.
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muscimol as in the above experiment before treatment, whereas the 
remaining half received vehicle. Thus, the design was 3 (stress condition) 
× 2  (muscimol versus vehicle) factorial. Rats were sacrificed at 2 h after 
the session, the time of maximal c-Fos expression after IS6.

As in our prior studies, neither IS nor ES treatment altered the 
 number of 5-HT–labeled neurons (data not shown). We determined 
the percentage of 5-HT–labeled neurons expressing c-Fos for the 
 caudal (Fig. 3a) and rostral (Fig. 3b) DRN (coordinates in Methods) by 
 immunohistochemistry. Again, as in our earlier studies, no 5-HT–labeled 
cells expressed c-Fos in HCC rats. This was true for both vehicle- and 
muscimol-injected HCC rats. Thus, HCC rats are not shown, as they are 
at zero with zero standard error, nor are they included in the statistical 
analysis. IS led to much greater c-Fos expression in caudal 5-HT neurons 
than did ES: a difference of approximately 300%. Muscimol abolished 
the difference between IS and ES, largely by increasing c-Fos expression 
in 5-HT  neurons in the ES rats. ANOVA showed significant effects of 
stress condition (F1, 22 = 4.27, P = 0.05) and an interaction between stress 
condition and muscimol (F1,22 = 10.41, P < 0.004). Fisher’s PLSD  post-
hoc comparisons showed that the ES-vehicle group differed from the 
other groups, which did not differ from each other. Thus,  muscimol sig-
nificantly increased c-Fos expression in caudal 5-HT neurons in ES rats, 
whereas the small reduction in IS rats was not statistically reliable. There 
was no effect of stressor controllability or muscimol in rostral DRN.

Extracellular 5-HT in the caudal DRN
We have previously found7 that IS produces much greater 5-HT efflux 
than does equal ES within the caudal DRN, as measured by in vivo 
microdialysis. This 5-HT is released by axon collaterals and perhaps 
from dendrites themselves and is likely to reflect the activity of the 
DRN 5-HT neurons22. Therefore, we used the same experimental 
design as in the above c-Fos experiment and measured extracellular 
levels of 5-HT in the DRN before, during and after the stress session. 
Muscimol injected into the mPFCv had no  detectable effect on 5-HT 
efflux within the DRN (Fig. 4, insert), and so the HCC groups with 

and without muscimol were pooled for simplicity. Measuring extracel-
lular 5-HT levels for the controls and for the groups given IS showed 
that IS produced a sustained increase in 5-HT that persisted during 
the IS session and for the period measured after the session (Fig. 4a). 
As in prior studies, ES (Fig. 4b) produced only a transient increase in 
5-HT, with 5-HT returning to baseline levels by 40 min after the onset 
of the stress session. This rapid reduction in 5-HT if the stressor is 
controllable is notable, as the stressor exposure continued for another 
80 min, but 5-HT now remained at baseline values. Muscimol, which 
had no effect in the IS rats, produced a marked increase in 5-HT 
efflux in the ES rats and elevated 5-HT to levels comparable to those 
observed in the IS rats. ANOVA on the baseline samples taken before 
the start of the stressor did not show any differences (all F values <1.0). 
During the stressor there were significant effects of stress condition 
(F2, 27 = 190.0, P < 0.00001), the interaction between stress condition 
and muscimol (F2, 27 = 4.31, P < 0.03), Time (F4,108 = 10.17, P < 0.0001), 
and the interaction between time, stress condition and muscimol 
(F8,108 = 2.34, P < 0.05). Fisher’s PLSD indicated that the IS-vehicle, 
IS, muscimol, and ES-muscimol groups differed from the other groups 
but did not differ from each other. ANOVA conducted on post-stress 
samples indicated significant effects of shock condition (F2,25 = 4.65, 
P < 0.02). Fisher’s PLSD indicated the same group differences as 
occurred during the stress treatment. Probe placements within the 
DRN are shown in Figure 2b.

Fear conditioning and escape learning
IS potentiates subsequent fear conditioning and interferes with 
escape learning, whereas ES does not 24. Thus, we used the same 3 × 2 
factorial design as above, with behavioral testing conducted 24 h after 
the ES/IS session using our typical procedures. However, we added 
two additional site-specificity control groups. One group was injected 
2.0 mm rostral (ventral orbital cortex (VO), n = 4) and the other 
2.0 mm caudal (cingulate cortex area 2 (Cg2), n = 4) relative to the usual 

Figure 3  Percentage of neurons double-labeled for 5-HT and c-Fos (mean 
± s.e.m). (a) Caudal DRN. (b) Rostral DRN. Gray bars represent rats that 
had received escapable stress; white bars represent rats that had received 
inescapable stress.

Figure 4  5-HT as a percentage of baseline in the DRN. The insert shows 
nonshocked home cage controls that received either muscimol or vehicle 
in the mPFCv (mean ± s.e.m). (a) Groups that received inescapable stress 
(IS) and controls. The open circles represent rats that had received vehicle 
before IS, the filled circles represent rats that had received muscimol 
before IS, and the dotted line represents the controls. (b) Groups that 
received escapable stress (ES) and controls. The open circles represent 
rats that had received vehicle before ES, the closed circles represent rats 
that had received muscimol before ES, and the dotted line represents the 
controls. The gray bar represents the time of stressor exposure in the wheel-
turn boxes.
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 examined the distributions of units with significant correlations 
(Pearson’s correlation coefficients, P < 0.05; Fig. 5). Negatively corre-
lated units predominated positive ones in the ventral bank (Fisher’s 
exact test, P < 0.05) for offered reward (Rew; Fig. 5a), expected utility  
(Eutil; Fig. 5c) and chosen reward amount (Cho × Rew; Fig. 5e). 
For conflict in decision (Conf; Fig. 5g) and reaction time (Fig. 5h), 
positively correlated units dominated negative ones. For decision 
(Cho; Fig. 5d), units coding avoidance (Cho = 0) dominated units  
coding approach (Cho = 1). Thus, except for offered and chosen  
airpuff strength (Ave and Cho × Ave; Fig. 5b,f), units responding to 
multiple different variables (low Rew, low Eutil, low Cho × Rew; high 
Conf and high RT; Cho = 0) predominated over their counterparts in 
the ventral bank region. These variables corresponded to the motiva-
tionally negative variables that activated N-type units.

Microstimulation alters approach-avoidance decision-making
On the basis of these biased distributions, we reasoned that micro-
stimulation in this ventral bank zone might bias the monkeys’ 
decision-making toward avoidance decisions, whereas stimulation 
elsewhere in the sampled pACC region might have limited effect 
because of the balance between the N-type and P-type populations. 
To test this prediction, we microstimulated at 97 sites in the pACC of 
monkeys S and A, using 1-s-long trains of biphasic pulses that started 
at the onset of the visual cues (Fig. 1c). Each site was stimulated  
in successive daily Ap-Av (n = 97) and Ap-Ap (n = 31) sessions. Within 
individual sessions, we alternated stimulation-off and stimulation-on 
trials in blocks of 250 trials.

The effects of the microstimulation on the monkeys’ decision-
 making were markedly selective. Stimulation was effective almost 
exclusively during performance of the Ap-Av task; it almost exclusively 

produced an increase in avoidance decisions and it produced this 
effect almost exclusively for stimulation applied to the ventral bank of 
the cingulate sulcus (Figs. 6 and 7). Compared with the stimulation-
off trials (Fig. 6a), the slope of the decision boundary during the 
stimulation-on trials was shifted rightward and the number of avoid-
ance decisions was increased (Fig. 6b). To quantify the effect of the 
stimulation, we introduced a spatial smoothing method and used 
Fisher’s exact probability test (Online Methods). We defined effec-
tive sites as those for which stimulation significantly changed the 
 monkey’s decisions (P < 0.05) for at least 5% of all combinations of 
the two cues. Microstimulation in the ventral bank of the cingulate 
sulcus significantly increased avoidance choices for 16.6% of all 
cue combinations, most strongly for those indicating high airpuff 
strengths (Fig. 6c). Identically applied stimulation at the same site 
during Ap-Ap task performance did not induce any change in deci-
sion (Fig. 6d–f).

Of the 97 sites that we examined in the medial wall cortex, 15 sites 
were effective, 13 of which (86.7%) produced an increase in avoid-
ance and were in the ventral bank of the cingulate sulcus (Fig. 7a 
and Supplementary Fig. 9). To characterize the stimulation effects 
at these 13 effective sites, we accumulated all of the behavioral data 
(Supplementary Fig. 10) and, with the accumulated data, expressed 
the difference in decision-making between stimulation-on and 
 stimulation-off trials as t scores. The tendency for increased avoid-
ance in the Ap-Av task was positively correlated with the strength of 
the aversive airpuff indicated by the visual cues (Fig. 7b), but was 
unchanged in the Ap-Ap task (Fig. 7c). Reaction times were affected 
in both monkeys, most strongly in monkey S, and were, in both, 
larger for high-conflict decisions than for low-conflict decisions 
(Supplementary Fig. 11). In some experiments, we ran triple-session 
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Figure 6 Effects of pACC microstimulation on decision-making. (a–f) Microstimulation (70 MA) was delivered during cue period at a single site 
(indicated by asterisk in Fig. 7a) in monkey S as she performed single Ap-Av (a–c) and Ap-Ap (d–f) task sessions on consecutive days. Left panels of 
a, b, d and e show scatter plots of each decision for stimulation-off (a,d) and stimulation-on (b,e) trials. Blue crosses and red squares indicate choice 
of cross and square targets, respectively. The black line represents the session’s decision boundary estimated by logistic regression analysis. Light 
blue and orange lines indicate the 90% and 10% levels, respectively, for choices of cross target, estimated by the modeled data produced by the 
logistic regression. Right panels show the mean choices for these stimulation-off (a,d) and stimulation-on (b,e) trials, with decision boundaries shown 
as dotted lines (black, stimulation-off; white, stimulation-on). Data were smoothed by a square window (20% by 20% of the decision matrix). Black 
outlines enclose decisions with 5% to 95% probability of cross target choices. Shown in c and f are matrix plots of t scores demonstrating significant 
stimulation-induced increase in avoidance in the Ap-Av task (c) and lack of significant stimulation effect in the Ap-Ap task (f). The region outlined in 
black in c indicates a zone with significant effects (Fisher’s exact test, P < 0.05), which covered 16.6% of the entire data matrix.
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muscimol as in the above experiment before treatment, whereas the 
remaining half received vehicle. Thus, the design was 3 (stress condition) 
× 2  (muscimol versus vehicle) factorial. Rats were sacrificed at 2 h after 
the session, the time of maximal c-Fos expression after IS6.

As in our prior studies, neither IS nor ES treatment altered the 
 number of 5-HT–labeled neurons (data not shown). We determined 
the percentage of 5-HT–labeled neurons expressing c-Fos for the 
 caudal (Fig. 3a) and rostral (Fig. 3b) DRN (coordinates in Methods) by 
 immunohistochemistry. Again, as in our earlier studies, no 5-HT–labeled 
cells expressed c-Fos in HCC rats. This was true for both vehicle- and 
muscimol-injected HCC rats. Thus, HCC rats are not shown, as they are 
at zero with zero standard error, nor are they included in the statistical 
analysis. IS led to much greater c-Fos expression in caudal 5-HT neurons 
than did ES: a difference of approximately 300%. Muscimol abolished 
the difference between IS and ES, largely by increasing c-Fos expression 
in 5-HT  neurons in the ES rats. ANOVA showed significant effects of 
stress condition (F1, 22 = 4.27, P = 0.05) and an interaction between stress 
condition and muscimol (F1,22 = 10.41, P < 0.004). Fisher’s PLSD  post-
hoc comparisons showed that the ES-vehicle group differed from the 
other groups, which did not differ from each other. Thus,  muscimol sig-
nificantly increased c-Fos expression in caudal 5-HT neurons in ES rats, 
whereas the small reduction in IS rats was not statistically reliable. There 
was no effect of stressor controllability or muscimol in rostral DRN.

Extracellular 5-HT in the caudal DRN
We have previously found7 that IS produces much greater 5-HT efflux 
than does equal ES within the caudal DRN, as measured by in vivo 
microdialysis. This 5-HT is released by axon collaterals and perhaps 
from dendrites themselves and is likely to reflect the activity of the 
DRN 5-HT neurons22. Therefore, we used the same experimental 
design as in the above c-Fos experiment and measured extracellular 
levels of 5-HT in the DRN before, during and after the stress session. 
Muscimol injected into the mPFCv had no  detectable effect on 5-HT 
efflux within the DRN (Fig. 4, insert), and so the HCC groups with 

and without muscimol were pooled for simplicity. Measuring extracel-
lular 5-HT levels for the controls and for the groups given IS showed 
that IS produced a sustained increase in 5-HT that persisted during 
the IS session and for the period measured after the session (Fig. 4a). 
As in prior studies, ES (Fig. 4b) produced only a transient increase in 
5-HT, with 5-HT returning to baseline levels by 40 min after the onset 
of the stress session. This rapid reduction in 5-HT if the stressor is 
controllable is notable, as the stressor exposure continued for another 
80 min, but 5-HT now remained at baseline values. Muscimol, which 
had no effect in the IS rats, produced a marked increase in 5-HT 
efflux in the ES rats and elevated 5-HT to levels comparable to those 
observed in the IS rats. ANOVA on the baseline samples taken before 
the start of the stressor did not show any differences (all F values <1.0). 
During the stressor there were significant effects of stress condition 
(F2, 27 = 190.0, P < 0.00001), the interaction between stress condition 
and muscimol (F2, 27 = 4.31, P < 0.03), Time (F4,108 = 10.17, P < 0.0001), 
and the interaction between time, stress condition and muscimol 
(F8,108 = 2.34, P < 0.05). Fisher’s PLSD indicated that the IS-vehicle, 
IS, muscimol, and ES-muscimol groups differed from the other groups 
but did not differ from each other. ANOVA conducted on post-stress 
samples indicated significant effects of shock condition (F2,25 = 4.65, 
P < 0.02). Fisher’s PLSD indicated the same group differences as 
occurred during the stress treatment. Probe placements within the 
DRN are shown in Figure 2b.

Fear conditioning and escape learning
IS potentiates subsequent fear conditioning and interferes with 
escape learning, whereas ES does not 24. Thus, we used the same 3 × 2 
factorial design as above, with behavioral testing conducted 24 h after 
the ES/IS session using our typical procedures. However, we added 
two additional site-specificity control groups. One group was injected 
2.0 mm rostral (ventral orbital cortex (VO), n = 4) and the other 
2.0 mm caudal (cingulate cortex area 2 (Cg2), n = 4) relative to the usual 

Figure 3  Percentage of neurons double-labeled for 5-HT and c-Fos (mean 
± s.e.m). (a) Caudal DRN. (b) Rostral DRN. Gray bars represent rats that 
had received escapable stress; white bars represent rats that had received 
inescapable stress.

Figure 4  5-HT as a percentage of baseline in the DRN. The insert shows 
nonshocked home cage controls that received either muscimol or vehicle 
in the mPFCv (mean ± s.e.m). (a) Groups that received inescapable stress 
(IS) and controls. The open circles represent rats that had received vehicle 
before IS, the filled circles represent rats that had received muscimol 
before IS, and the dotted line represents the controls. (b) Groups that 
received escapable stress (ES) and controls. The open circles represent 
rats that had received vehicle before ES, the closed circles represent rats 
that had received muscimol before ES, and the dotted line represents the 
controls. The gray bar represents the time of stressor exposure in the wheel-
turn boxes.
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 examined the distributions of units with significant correlations 
(Pearson’s correlation coefficients, P < 0.05; Fig. 5). Negatively corre-
lated units predominated positive ones in the ventral bank (Fisher’s 
exact test, P < 0.05) for offered reward (Rew; Fig. 5a), expected utility  
(Eutil; Fig. 5c) and chosen reward amount (Cho × Rew; Fig. 5e). 
For conflict in decision (Conf; Fig. 5g) and reaction time (Fig. 5h), 
positively correlated units dominated negative ones. For decision 
(Cho; Fig. 5d), units coding avoidance (Cho = 0) dominated units  
coding approach (Cho = 1). Thus, except for offered and chosen  
airpuff strength (Ave and Cho × Ave; Fig. 5b,f), units responding to 
multiple different variables (low Rew, low Eutil, low Cho × Rew; high 
Conf and high RT; Cho = 0) predominated over their counterparts in 
the ventral bank region. These variables corresponded to the motiva-
tionally negative variables that activated N-type units.

Microstimulation alters approach-avoidance decision-making
On the basis of these biased distributions, we reasoned that micro-
stimulation in this ventral bank zone might bias the monkeys’ 
decision-making toward avoidance decisions, whereas stimulation 
elsewhere in the sampled pACC region might have limited effect 
because of the balance between the N-type and P-type populations. 
To test this prediction, we microstimulated at 97 sites in the pACC of 
monkeys S and A, using 1-s-long trains of biphasic pulses that started 
at the onset of the visual cues (Fig. 1c). Each site was stimulated  
in successive daily Ap-Av (n = 97) and Ap-Ap (n = 31) sessions. Within 
individual sessions, we alternated stimulation-off and stimulation-on 
trials in blocks of 250 trials.

The effects of the microstimulation on the monkeys’ decision-
 making were markedly selective. Stimulation was effective almost 
exclusively during performance of the Ap-Av task; it almost exclusively 

produced an increase in avoidance decisions and it produced this 
effect almost exclusively for stimulation applied to the ventral bank of 
the cingulate sulcus (Figs. 6 and 7). Compared with the stimulation-
off trials (Fig. 6a), the slope of the decision boundary during the 
stimulation-on trials was shifted rightward and the number of avoid-
ance decisions was increased (Fig. 6b). To quantify the effect of the 
stimulation, we introduced a spatial smoothing method and used 
Fisher’s exact probability test (Online Methods). We defined effec-
tive sites as those for which stimulation significantly changed the 
 monkey’s decisions (P < 0.05) for at least 5% of all combinations of 
the two cues. Microstimulation in the ventral bank of the cingulate 
sulcus significantly increased avoidance choices for 16.6% of all 
cue combinations, most strongly for those indicating high airpuff 
strengths (Fig. 6c). Identically applied stimulation at the same site 
during Ap-Ap task performance did not induce any change in deci-
sion (Fig. 6d–f).

Of the 97 sites that we examined in the medial wall cortex, 15 sites 
were effective, 13 of which (86.7%) produced an increase in avoid-
ance and were in the ventral bank of the cingulate sulcus (Fig. 7a 
and Supplementary Fig. 9). To characterize the stimulation effects 
at these 13 effective sites, we accumulated all of the behavioral data 
(Supplementary Fig. 10) and, with the accumulated data, expressed 
the difference in decision-making between stimulation-on and 
 stimulation-off trials as t scores. The tendency for increased avoid-
ance in the Ap-Av task was positively correlated with the strength of 
the aversive airpuff indicated by the visual cues (Fig. 7b), but was 
unchanged in the Ap-Ap task (Fig. 7c). Reaction times were affected 
in both monkeys, most strongly in monkey S, and were, in both, 
larger for high-conflict decisions than for low-conflict decisions 
(Supplementary Fig. 11). In some experiments, we ran triple-session 
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Figure 6 Effects of pACC microstimulation on decision-making. (a–f) Microstimulation (70 MA) was delivered during cue period at a single site 
(indicated by asterisk in Fig. 7a) in monkey S as she performed single Ap-Av (a–c) and Ap-Ap (d–f) task sessions on consecutive days. Left panels of 
a, b, d and e show scatter plots of each decision for stimulation-off (a,d) and stimulation-on (b,e) trials. Blue crosses and red squares indicate choice 
of cross and square targets, respectively. The black line represents the session’s decision boundary estimated by logistic regression analysis. Light 
blue and orange lines indicate the 90% and 10% levels, respectively, for choices of cross target, estimated by the modeled data produced by the 
logistic regression. Right panels show the mean choices for these stimulation-off (a,d) and stimulation-on (b,e) trials, with decision boundaries shown 
as dotted lines (black, stimulation-off; white, stimulation-on). Data were smoothed by a square window (20% by 20% of the decision matrix). Black 
outlines enclose decisions with 5% to 95% probability of cross target choices. Shown in c and f are matrix plots of t scores demonstrating significant 
stimulation-induced increase in avoidance in the Ap-Av task (c) and lack of significant stimulation effect in the Ap-Ap task (f). The region outlined in 
black in c indicates a zone with significant effects (Fisher’s exact test, P < 0.05), which covered 16.6% of the entire data matrix.
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of the variance in BDIposttest-pretest (F1,15=16.32 [P=.001]),
and R2= 0.29 in the combined sample (F1,42= 16.87
[P! .001]). Cutoffs for sgACCz in the range of 0.46 to
0.74 strongly predicted response across measures for both
samples (76%-81% correct response classification), sug-
gesting that high levels of sgACC activity predicted non-
response. Similarly, cutoffs closer to 0 predicted remis-
sion, so participants with average or higher levels of

sgACC responses compared with controls were un-
likely to experience remission in CT.

Goal 5: Change in sgACC Activity With Treatment

Forty depressed participants had pretreatment and
posttreatment fMRI and BDI scores. Participants with the
lowest pretreatment sgACC activity (primarily CT
remitters) also had the lowest posttreatment activity
(rpretreatment,posttreatment=0.39;F1,39=6.82[P=.01]) (Figure4A).
Depressedparticipantswithpretreatmentactivitybelowthe
predicted response threshold who experienced remis-
sion had pretreatment and posttreatment sgACC activity
below that of controls throughout the trial (Figure 4B) and
did not increase significantly (eTable 4, t test, pretreat-
ment vs posttreatment). In contrast, controls with low pre-
treatment activity increased significantly (eTable 4 and eFig-
ure 7B), and depressed nonremitters with low pretreatment
activity nearly so (Figure 4C, for statistics, see eTable 4).
Moreover, depressed remitters with low pretreatment ac-
tivity had a nonsignificantly smaller proportion of partici-
pants who increased and a lower mean level of increase than
did controls or nonremitters with low pretreatment activ-
ity (eMaterial XII-B). Thus, we cannot conclude that sgACC
activity increased as a function of treatment. Qualita-
tively, in contrast, 5 of 6 nonremitters with low pretreat-
ment activity (Figure 4A, green squares) showed in-
creased sgACC activity after treatment. Similarly, 3 of 5
remitters who had high pretreatment sgACC activity had
decreased posttreatment activity (Figure 4A, blue squares;
Figure 4D shows the average BOLD response), whereas 8
of the 12 nonremitters with high pretreatment sgACC ac-

A

C

B

D

Figure 3. Decreased empirically defined subgenual anterior cingulate activity associated strongly with response. A, Pretreatment regions associated with
decreased depressive severity from Siegle et al.4 B, The new cognitive therapy samples (n=40; R 2"0.40 [P! .001]). Green indicates the anatomical region of
interest used as a mask; orange, regions only in the new data set; and red, voxels that overlap. C and D, These regions were reflected in predictive regions in
cohorts 1 (R 2=0.43-0.79 [P! .01]) and 2 (R 2=0.26 [P! .01]), respectively.

Table 3. Prediction of Residual Symptoms Using an A Priori
Network With Combined Cohort as a Sample of Interesta

Relationship Measure Region Statistic

Zero-order
relationships,
P !.05 for all
comparisonsb

BDI sgACC R 2 = 0.29
Right amygdala R 2 = 0.16
Left DLPFC R2 = 0.20
BA24 in the
VMPFC

R 2 = 0.11

Multivariate
relationships,
full model
R 2 = 0.43;
F1,38 = 7.39
(P ! .001)c

BDI Constant (P = .21)
sgACC st# = 0.47 (P ! .001)
Right

amygdala
st# = 0.24 (P = .10)

Left DLPFC st# = 0.30 (P = .05)
BA24 in the
VMPFC

st# = −0.10 (P = .52)

Abbreviations: BA, Brodmann area; BDI, Beck Depression Inventory;
DLPFC, dorsolateral prefrontal cortex; sgACC, subgenual anterior cingulate
cortex; st#, standardized beta; VMPFC, ventromedial prefrontal cortex.

aClassification not evaluated in the multivariate model without robust
estimation given the potential for type I error; rather, evaluations in Table 4
reflect robust estimations from the multivariate model (n = 43).

bSee eMaterial VIII and eTable S2A for complete statistics.
cSee eMaterial VIII and eTable S2A for complete statistics.
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muscimol as in the above experiment before treatment, whereas the 
remaining half received vehicle. Thus, the design was 3 (stress condition) 
× 2  (muscimol versus vehicle) factorial. Rats were sacrificed at 2 h after 
the session, the time of maximal c-Fos expression after IS6.

As in our prior studies, neither IS nor ES treatment altered the 
 number of 5-HT–labeled neurons (data not shown). We determined 
the percentage of 5-HT–labeled neurons expressing c-Fos for the 
 caudal (Fig. 3a) and rostral (Fig. 3b) DRN (coordinates in Methods) by 
 immunohistochemistry. Again, as in our earlier studies, no 5-HT–labeled 
cells expressed c-Fos in HCC rats. This was true for both vehicle- and 
muscimol-injected HCC rats. Thus, HCC rats are not shown, as they are 
at zero with zero standard error, nor are they included in the statistical 
analysis. IS led to much greater c-Fos expression in caudal 5-HT neurons 
than did ES: a difference of approximately 300%. Muscimol abolished 
the difference between IS and ES, largely by increasing c-Fos expression 
in 5-HT  neurons in the ES rats. ANOVA showed significant effects of 
stress condition (F1, 22 = 4.27, P = 0.05) and an interaction between stress 
condition and muscimol (F1,22 = 10.41, P < 0.004). Fisher’s PLSD  post-
hoc comparisons showed that the ES-vehicle group differed from the 
other groups, which did not differ from each other. Thus,  muscimol sig-
nificantly increased c-Fos expression in caudal 5-HT neurons in ES rats, 
whereas the small reduction in IS rats was not statistically reliable. There 
was no effect of stressor controllability or muscimol in rostral DRN.

Extracellular 5-HT in the caudal DRN
We have previously found7 that IS produces much greater 5-HT efflux 
than does equal ES within the caudal DRN, as measured by in vivo 
microdialysis. This 5-HT is released by axon collaterals and perhaps 
from dendrites themselves and is likely to reflect the activity of the 
DRN 5-HT neurons22. Therefore, we used the same experimental 
design as in the above c-Fos experiment and measured extracellular 
levels of 5-HT in the DRN before, during and after the stress session. 
Muscimol injected into the mPFCv had no  detectable effect on 5-HT 
efflux within the DRN (Fig. 4, insert), and so the HCC groups with 

and without muscimol were pooled for simplicity. Measuring extracel-
lular 5-HT levels for the controls and for the groups given IS showed 
that IS produced a sustained increase in 5-HT that persisted during 
the IS session and for the period measured after the session (Fig. 4a). 
As in prior studies, ES (Fig. 4b) produced only a transient increase in 
5-HT, with 5-HT returning to baseline levels by 40 min after the onset 
of the stress session. This rapid reduction in 5-HT if the stressor is 
controllable is notable, as the stressor exposure continued for another 
80 min, but 5-HT now remained at baseline values. Muscimol, which 
had no effect in the IS rats, produced a marked increase in 5-HT 
efflux in the ES rats and elevated 5-HT to levels comparable to those 
observed in the IS rats. ANOVA on the baseline samples taken before 
the start of the stressor did not show any differences (all F values <1.0). 
During the stressor there were significant effects of stress condition 
(F2, 27 = 190.0, P < 0.00001), the interaction between stress condition 
and muscimol (F2, 27 = 4.31, P < 0.03), Time (F4,108 = 10.17, P < 0.0001), 
and the interaction between time, stress condition and muscimol 
(F8,108 = 2.34, P < 0.05). Fisher’s PLSD indicated that the IS-vehicle, 
IS, muscimol, and ES-muscimol groups differed from the other groups 
but did not differ from each other. ANOVA conducted on post-stress 
samples indicated significant effects of shock condition (F2,25 = 4.65, 
P < 0.02). Fisher’s PLSD indicated the same group differences as 
occurred during the stress treatment. Probe placements within the 
DRN are shown in Figure 2b.

Fear conditioning and escape learning
IS potentiates subsequent fear conditioning and interferes with 
escape learning, whereas ES does not 24. Thus, we used the same 3 × 2 
factorial design as above, with behavioral testing conducted 24 h after 
the ES/IS session using our typical procedures. However, we added 
two additional site-specificity control groups. One group was injected 
2.0 mm rostral (ventral orbital cortex (VO), n = 4) and the other 
2.0 mm caudal (cingulate cortex area 2 (Cg2), n = 4) relative to the usual 

Figure 3  Percentage of neurons double-labeled for 5-HT and c-Fos (mean 
± s.e.m). (a) Caudal DRN. (b) Rostral DRN. Gray bars represent rats that 
had received escapable stress; white bars represent rats that had received 
inescapable stress.

Figure 4  5-HT as a percentage of baseline in the DRN. The insert shows 
nonshocked home cage controls that received either muscimol or vehicle 
in the mPFCv (mean ± s.e.m). (a) Groups that received inescapable stress 
(IS) and controls. The open circles represent rats that had received vehicle 
before IS, the filled circles represent rats that had received muscimol 
before IS, and the dotted line represents the controls. (b) Groups that 
received escapable stress (ES) and controls. The open circles represent 
rats that had received vehicle before ES, the closed circles represent rats 
that had received muscimol before ES, and the dotted line represents the 
controls. The gray bar represents the time of stressor exposure in the wheel-
turn boxes.
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 examined the distributions of units with significant correlations 
(Pearson’s correlation coefficients, P < 0.05; Fig. 5). Negatively corre-
lated units predominated positive ones in the ventral bank (Fisher’s 
exact test, P < 0.05) for offered reward (Rew; Fig. 5a), expected utility  
(Eutil; Fig. 5c) and chosen reward amount (Cho × Rew; Fig. 5e). 
For conflict in decision (Conf; Fig. 5g) and reaction time (Fig. 5h), 
positively correlated units dominated negative ones. For decision 
(Cho; Fig. 5d), units coding avoidance (Cho = 0) dominated units  
coding approach (Cho = 1). Thus, except for offered and chosen  
airpuff strength (Ave and Cho × Ave; Fig. 5b,f), units responding to 
multiple different variables (low Rew, low Eutil, low Cho × Rew; high 
Conf and high RT; Cho = 0) predominated over their counterparts in 
the ventral bank region. These variables corresponded to the motiva-
tionally negative variables that activated N-type units.

Microstimulation alters approach-avoidance decision-making
On the basis of these biased distributions, we reasoned that micro-
stimulation in this ventral bank zone might bias the monkeys’ 
decision-making toward avoidance decisions, whereas stimulation 
elsewhere in the sampled pACC region might have limited effect 
because of the balance between the N-type and P-type populations. 
To test this prediction, we microstimulated at 97 sites in the pACC of 
monkeys S and A, using 1-s-long trains of biphasic pulses that started 
at the onset of the visual cues (Fig. 1c). Each site was stimulated  
in successive daily Ap-Av (n = 97) and Ap-Ap (n = 31) sessions. Within 
individual sessions, we alternated stimulation-off and stimulation-on 
trials in blocks of 250 trials.

The effects of the microstimulation on the monkeys’ decision-
 making were markedly selective. Stimulation was effective almost 
exclusively during performance of the Ap-Av task; it almost exclusively 

produced an increase in avoidance decisions and it produced this 
effect almost exclusively for stimulation applied to the ventral bank of 
the cingulate sulcus (Figs. 6 and 7). Compared with the stimulation-
off trials (Fig. 6a), the slope of the decision boundary during the 
stimulation-on trials was shifted rightward and the number of avoid-
ance decisions was increased (Fig. 6b). To quantify the effect of the 
stimulation, we introduced a spatial smoothing method and used 
Fisher’s exact probability test (Online Methods). We defined effec-
tive sites as those for which stimulation significantly changed the 
 monkey’s decisions (P < 0.05) for at least 5% of all combinations of 
the two cues. Microstimulation in the ventral bank of the cingulate 
sulcus significantly increased avoidance choices for 16.6% of all 
cue combinations, most strongly for those indicating high airpuff 
strengths (Fig. 6c). Identically applied stimulation at the same site 
during Ap-Ap task performance did not induce any change in deci-
sion (Fig. 6d–f).

Of the 97 sites that we examined in the medial wall cortex, 15 sites 
were effective, 13 of which (86.7%) produced an increase in avoid-
ance and were in the ventral bank of the cingulate sulcus (Fig. 7a 
and Supplementary Fig. 9). To characterize the stimulation effects 
at these 13 effective sites, we accumulated all of the behavioral data 
(Supplementary Fig. 10) and, with the accumulated data, expressed 
the difference in decision-making between stimulation-on and 
 stimulation-off trials as t scores. The tendency for increased avoid-
ance in the Ap-Av task was positively correlated with the strength of 
the aversive airpuff indicated by the visual cues (Fig. 7b), but was 
unchanged in the Ap-Ap task (Fig. 7c). Reaction times were affected 
in both monkeys, most strongly in monkey S, and were, in both, 
larger for high-conflict decisions than for low-conflict decisions 
(Supplementary Fig. 11). In some experiments, we ran triple-session 
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Figure 6 Effects of pACC microstimulation on decision-making. (a–f) Microstimulation (70 MA) was delivered during cue period at a single site 
(indicated by asterisk in Fig. 7a) in monkey S as she performed single Ap-Av (a–c) and Ap-Ap (d–f) task sessions on consecutive days. Left panels of 
a, b, d and e show scatter plots of each decision for stimulation-off (a,d) and stimulation-on (b,e) trials. Blue crosses and red squares indicate choice 
of cross and square targets, respectively. The black line represents the session’s decision boundary estimated by logistic regression analysis. Light 
blue and orange lines indicate the 90% and 10% levels, respectively, for choices of cross target, estimated by the modeled data produced by the 
logistic regression. Right panels show the mean choices for these stimulation-off (a,d) and stimulation-on (b,e) trials, with decision boundaries shown 
as dotted lines (black, stimulation-off; white, stimulation-on). Data were smoothed by a square window (20% by 20% of the decision matrix). Black 
outlines enclose decisions with 5% to 95% probability of cross target choices. Shown in c and f are matrix plots of t scores demonstrating significant 
stimulation-induced increase in avoidance in the Ap-Av task (c) and lack of significant stimulation effect in the Ap-Ap task (f). The region outlined in 
black in c indicates a zone with significant effects (Fisher’s exact test, P < 0.05), which covered 16.6% of the entire data matrix.
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Correlates with ruminationNEURAL CORRELATES OF RUMINATION IN DEPRESSION    475

CTLs. In response to RUM versus ABS, both MDDs and 
CTLs exhibited activation in different subregions of the 
DLPFC (BA 46 and BA 9, respectively). Our findings are 
consistent with work demonstrating greater activation in 
DLPFC during self-referential processing in depressed 
individuals (Lemogne et al., 2009), and with the growing 
literature documenting structural and functional irregu-
larities in the DLPFC in depression (e.g., Fitzgerald et al., 
2006; Koenigs et al., 2008). Considered in light of the 
strong association between rumination and the develop-
ment and maintenance of depressed mood, the differen-
tial pattern of activation observed in DLPFC in MDD as 
compared with that in CTL participants (i.e., increased 
DLPFC activation in MDDs during rumination as com-
pared with both the abstract and concrete distraction con-
ditions) reinforces the importance of continued investiga-
tion of this region. At this early stage, it is not yet clear 
whether hyperactivation of the DLPFC during rumination 
in depression reflects an impaired regulatory mechanism 
or whether the DLPFC may indicate recruitment toward 
more basic cognitive demands during self-focus—a ques-
tion that is important for future research to address.

thought and inhibited during various cognitive tasks. In-
terestingly, the rumination condition used in the present 
study is similar to some resting-state conditions used in 
investigations of the default mode network. Within this 
network, anterior regions are hypothesized to be associ-
ated with self-focused aspects of internal thoughts; pos-
terior regions, including the PCC, are associated with the 
retrieval of autobiographical memories. The increased ac-
tivation within the parahippocampus also observed in the 
MDD group suggests that during RUM versus ABS, they 
are engaging in more mood-congruent memory retrieval. 
Importantly, CTL participants also exhibited activation 
within the PCC during the RUM versus ABS contrast, but 
did so to a lesser extent than did MDDs. This finding sup-
ports recent observations that depressed individuals are 
characterized by impaired context-dependent reductions 
in activation in default-mode regions (Grimm et al., 2009; 
Sheline et al., 2009).

A final region of activation that we should consider 
here, common to both depressed and healthy control par-
ticipants, is the DLPFC. The RUM versus CON contrast 
identified greater activation in DLPFC in MDDs than in 
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Figure 1. Activations to rumination (RUM) versus concrete (CON) distraction contrast. Yellow activations, MDD � CTL; blue 
activations, CTL � MDD. Left � left. Orbitofrontal cortex (4, 30, �26). Subgenual anterior cingulate (BA 25; �4, 15, �7), p � .02, 
corrected. MDD, depressed group; CTL, control group.

of the variance in BDIposttest-pretest (F1,15=16.32 [P=.001]),
and R2= 0.29 in the combined sample (F1,42= 16.87
[P! .001]). Cutoffs for sgACCz in the range of 0.46 to
0.74 strongly predicted response across measures for both
samples (76%-81% correct response classification), sug-
gesting that high levels of sgACC activity predicted non-
response. Similarly, cutoffs closer to 0 predicted remis-
sion, so participants with average or higher levels of

sgACC responses compared with controls were un-
likely to experience remission in CT.

Goal 5: Change in sgACC Activity With Treatment

Forty depressed participants had pretreatment and
posttreatment fMRI and BDI scores. Participants with the
lowest pretreatment sgACC activity (primarily CT
remitters) also had the lowest posttreatment activity
(rpretreatment,posttreatment=0.39;F1,39=6.82[P=.01]) (Figure4A).
Depressedparticipantswithpretreatmentactivitybelowthe
predicted response threshold who experienced remis-
sion had pretreatment and posttreatment sgACC activity
below that of controls throughout the trial (Figure 4B) and
did not increase significantly (eTable 4, t test, pretreat-
ment vs posttreatment). In contrast, controls with low pre-
treatment activity increased significantly (eTable 4 and eFig-
ure 7B), and depressed nonremitters with low pretreatment
activity nearly so (Figure 4C, for statistics, see eTable 4).
Moreover, depressed remitters with low pretreatment ac-
tivity had a nonsignificantly smaller proportion of partici-
pants who increased and a lower mean level of increase than
did controls or nonremitters with low pretreatment activ-
ity (eMaterial XII-B). Thus, we cannot conclude that sgACC
activity increased as a function of treatment. Qualita-
tively, in contrast, 5 of 6 nonremitters with low pretreat-
ment activity (Figure 4A, green squares) showed in-
creased sgACC activity after treatment. Similarly, 3 of 5
remitters who had high pretreatment sgACC activity had
decreased posttreatment activity (Figure 4A, blue squares;
Figure 4D shows the average BOLD response), whereas 8
of the 12 nonremitters with high pretreatment sgACC ac-

A

C

B

D

Figure 3. Decreased empirically defined subgenual anterior cingulate activity associated strongly with response. A, Pretreatment regions associated with
decreased depressive severity from Siegle et al.4 B, The new cognitive therapy samples (n=40; R 2"0.40 [P! .001]). Green indicates the anatomical region of
interest used as a mask; orange, regions only in the new data set; and red, voxels that overlap. C and D, These regions were reflected in predictive regions in
cohorts 1 (R 2=0.43-0.79 [P! .01]) and 2 (R 2=0.26 [P! .01]), respectively.

Table 3. Prediction of Residual Symptoms Using an A Priori
Network With Combined Cohort as a Sample of Interesta

Relationship Measure Region Statistic

Zero-order
relationships,
P !.05 for all
comparisonsb

BDI sgACC R 2 = 0.29
Right amygdala R 2 = 0.16
Left DLPFC R2 = 0.20
BA24 in the
VMPFC

R 2 = 0.11

Multivariate
relationships,
full model
R 2 = 0.43;
F1,38 = 7.39
(P ! .001)c

BDI Constant (P = .21)
sgACC st# = 0.47 (P ! .001)
Right

amygdala
st# = 0.24 (P = .10)

Left DLPFC st# = 0.30 (P = .05)
BA24 in the
VMPFC

st# = −0.10 (P = .52)

Abbreviations: BA, Brodmann area; BDI, Beck Depression Inventory;
DLPFC, dorsolateral prefrontal cortex; sgACC, subgenual anterior cingulate
cortex; st#, standardized beta; VMPFC, ventromedial prefrontal cortex.

aClassification not evaluated in the multivariate model without robust
estimation given the potential for type I error; rather, evaluations in Table 4
reflect robust estimations from the multivariate model (n = 43).

bSee eMaterial VIII and eTable S2A for complete statistics.
cSee eMaterial VIII and eTable S2A for complete statistics.
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Pruning - sgACC and rumination

Lally*, Huys* et al., 2017 J. Neurosci.

‣ fMRI too slow to pinpoint pruning events 
‣ trial by trial measure of “pruning urge”

pt = DKL (p(at|Q, �S = �G)||p(at|Q, �S , �G))
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Pruning and rumination
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Outline
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On the computational structure of mood 
and anxiety disorders
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Feedback please!
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